000 03919nam a22004095i 4500
001 280612
003 MX-SnUAN
005 20170705134203.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780817645199
_99780817645199
024 7 _a10.1007/9780817645199
_2doi
035 _avtls000333532
039 9 _a201509030802
_bVLOAD
_c201404130444
_dVLOAD
_c201404092233
_dVLOAD
_y201402041113
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.9.C643
100 1 _aBunke, Horst.
_eautor
_9305661
245 1 2 _aA Graph-Theoretic Approach to Enterprise Network Dynamics /
_cby Horst Bunke, Peter J. Dickinson, Miro Kraetzl, Walter D. Wallis.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2007.
300 _axiii, 225 páginas 110 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Computer Science and Applied Logic (PCS) ;
_v24
500 _aSpringer eBooks
505 0 _aIntranets and Network Management -- Graph-Theoretic Concepts -- Event Detection Using Graph Distance -- Matching Graphs with Unique Node Labels -- Graph Similarity Measures for Abnormal Change Detection -- Median Graphs for Abnormal Change Detection -- Graph Clustering for Abnormal Change Detection -- Graph Distance Measures based on Intragraph Clustering and Cluster Distance -- Matching Sequences of Graphs -- Properties of the Underlying Graphs -- Distances, Clustering, and Small Worlds -- Tournament Scoring -- Prediction and Advanced Distance Measures -- Recovery of Missing Information in Graph Sequences -- Matching Hierarchical Graphs.
520 _aNetworks have become nearly ubiquitous and increasingly complex, and their support of modern enterprise environments has become fundamental. Accordingly, robust network management techniques are essential to ensure optimal performance of these networks. This monograph treats the application of numerous graph-theoretic algorithms to a comprehensive analysis of dynamic enterprise networks. Network dynamics analysis yields valuable information about network performance, efficiency, fault prediction, cost optimization, indicators and warnings. The exposition is organized into four relatively independent parts: an introduction and overview of typical enterprise networks and the graph theoretical prerequisites for all algorithms introduced later; an in-depth treatise of usage of various graph distances for event detection; a detailed exploration of properties of underlying graphs with modeling applications; and a theoretical and applied treatment of network behavior inferencing and forecasting using sequences of graphs. Based on many years of applied research on generic network dynamics, this work covers a number of elegant applications (including many new and experimental results) of traditional graph theory algorithms and techniques to computationally tractable network dynamics analysis to motivate network analysts, practitioners and researchers alike. The material is also suitable for graduate courses addressing state-of-the-art applications of graph theory in analysis of dynamic communication networks, dynamic databasing, and knowledge management.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aDickinson, Peter J.
_eautor
_9305662
700 1 _aKraetzl, Miro.
_eautor
_9305663
700 1 _aWallis, Walter D.
_eautor
_9305664
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817644857
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4519-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280612
_d280612