000 02887nam a22003735i 4500
001 280664
003 MX-SnUAN
005 20160429154033.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780817646202
_99780817646202
024 7 _a10.1007/9780817646202
_2doi
035 _avtls000333582
039 9 _a201509030205
_bVLOAD
_c201404130453
_dVLOAD
_c201404092243
_dVLOAD
_y201402041114
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aT57-57.97
100 1 _aPalmer, John.
_eautor
_9305748
245 1 0 _aPlanar Ising Correlations /
_cby John Palmer.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2007.
300 _axii, 372 páginas 30 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematical Physics ;
_v49
500 _aSpringer eBooks
505 0 _aThe Thermodynamic Limit -- The Spontaneous Magnetization and Two-Point Spin Correlation -- Scaling Limits -- The One-Point Green Function -- Scaling Functions as Tau Functions -- Deformation Analysis of Tau Functions.
520 _aThis book examines in detail the correlations for the two-dimensional Ising model in the infinite volume or thermodynamic limit and the sub- and super-critical continuum scaling limits. Steady progress in recent years has been made in understanding the special mathematical features of certain exactly solvable models in statistical mechanics and quantum field theory, including the scaling limits of the 2-D Ising (lattice) model, and more generally, a class of 2-D quantum fields known as holonomic fields. New results have made it possible to obtain a detailed nonperturbative analysis of the multi-spin correlations. In particular, the book focuses on deformation analysis of the scaling functions of the Ising model. This self-contained work also includes discussions on Pfaffians, elliptic uniformization, the Grassmann calculus for spin representations, Weiner--Hopf factorization, determinant bundles, and monodromy preserving deformations. This work explores the Ising model as a microcosm of the confluence of interesting ideas in mathematics and physics, and will appeal to graduate students, mathematicians, and physicists interested in the mathematics of statistical mechanics and quantum field theory.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817642488
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4620-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280664
_d280664