000 03310nam a22003975i 4500
001 280669
003 MX-SnUAN
005 20160429154033.0
007 cr nn 008mamaa
008 150903s2010 xxu| o |||| 0|eng d
020 _a9780817649340
_99780817649340
024 7 _a10.1007/9780817649340
_2doi
035 _avtls000333678
039 9 _a201509030803
_bVLOAD
_c201404130512
_dVLOAD
_c201404092302
_dVLOAD
_y201402041117
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA564-609
100 1 _aBogomolov, Fedor.
_eeditor.
_9305754
245 1 0 _aCohomological and Geometric Approaches to Rationality Problems :
_bNew Perspectives /
_cedited by Fedor Bogomolov, Yuri Tschinkel.
250 _a1.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2010.
300 _ax, 314 páginas 47 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v282
500 _aSpringer eBooks
505 0 _aThe Rationality of Certain Moduli Spaces of Curves of Genus 3 -- The Rationality of the Moduli Space of Curves of Genus 3 after P. Katsylo -- Unramified Cohomology of Finite Groups of Lie Type -- Sextic Double Solids -- Moduli Stacks of Vector Bundles on Curves and the King–Schofield Rationality Proof -- Noether’s Problem for Some -Groups -- Generalized Homological Mirror Symmetry and Rationality Questions -- The Bogomolov Multiplier of Finite Simple Groups -- Derived Categories of Cubic Fourfolds -- Fields of Invariants of Finite Linear Groups -- The Rationality Problem and Birational Rigidity.
520 _aRationality problems link algebra to geometry. The difficulties involved depend on the transcendence degree over the ground field, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. These advances have led to many interdisciplinary applications of algebraic geometry. This comprehensive text consists of surveys and research papers by leading specialists in the field. Topics discussed include the rationality of quotient spaces, cohomological invariants of finite groups of Lie type, rationality of moduli spaces of curves, and rational points on algebraic varieties. This volume is intended for research mathematicians and graduate students interested in algebraic geometry, and specifically in rationality problems. I. Bauer C. Böhning F. Bogomolov F. Catanese I. Cheltsov N. Hoffmann S.-J. Hu M.-C. Kang L. Katzarkov B. Kunyavskii A. Kuznetsov J. Park T. Petrov Yu. G. Prokhorov A.V. Pukhlikov Yu. Tschinkel
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aTschinkel, Yuri.
_eeditor.
_9305755
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817649333
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4934-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280669
_d280669