000 | 03940nam a22003975i 4500 | ||
---|---|---|---|
001 | 280694 | ||
003 | MX-SnUAN | ||
005 | 20160429154034.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 xxu| o |||| 0|eng d | ||
020 |
_a9780817644475 _99780817644475 |
||
024 | 7 |
_a10.1007/0817644474 _2doi |
|
035 | _avtls000333495 | ||
039 | 9 |
_a201509030721 _bVLOAD _c201404120634 _dVLOAD _c201404090414 _dVLOAD _y201402041112 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA564-609 | |
100 | 1 |
_aGeer, Gerard. _eeditor. _9305805 |
|
245 | 1 | 0 |
_aNumber Fields and Function Fields—Two Parallel Worlds / _cedited by Gerard Geer, Ben Moonen, René Schoof. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2005. |
|
300 |
_axiv, 318 páginas 7 tables. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v239 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aArithmetic over Function Fields: A Cohomological Approach -- Algebraic Stacks Whose Number of Points over Finite Fields is a Polynomial -- On a Problem of Miyaoka -- Monodromy Groups Associated to Non-Isotrivial Drinfeld Modules in Generic Characteristic -- Irreducible Values of Polynomials: A Non-Analogy -- Schemes over -- Line Bundles and p-Adic Characters -- Arithmetic Eisenstein Classes on the Siegel Space: Some Computations -- Uniformizing the Stacks of Abelian Sheaves -- Faltings’ Delta-Invariant of a Hyperelliptic Riemann Surface -- A Hirzebruch Proportionality Principle in Arakelov Geometry -- On the Height Conjecture for Algebraic Points on Curves Defined over Number Fields -- A Note on Absolute Derivations and Zeta Functions -- On the Order of Certain Characteristic Classes of the Hodge Bundle of Semi-Abelian Schemes -- A Note on the Manin-Mumford Conjecture. | |
520 | _aEver since the analogy between number fields and function fields was discovered, it has been a source of inspiration for new ideas, and a long history has not in any way detracted from the appeal of the subject. As a deeper understanding of this analogy could have tremendous consequences, the search for a unified approach has become a sort of Holy Grail. The arrival of Arakelov's new geometry that tries to put the archimedean places on a par with the finite ones gave a new impetus and led to spectacular success in Faltings' hands. There are numerous further examples where ideas or techniques from the more geometrically-oriented world of function fields have led to new insights in the more arithmetically-oriented world of number fields, or vice versa. These invited articles by leading researchers in the field explore various aspects of the parallel worlds of function fields and number fields. Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives. This volume is aimed at a wide audience of graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections. Contributors: G. Böckle; T. van den Bogaart; H. Brenner; F. Breuer; K. Conrad; A. Deitmar; C. Deninger; B. Edixhoven; G. Faltings; U. Hartl; R. de Jong; K. Köhler; U. Kühn; J.C. Lagarias; V. Maillot; R. Pink; D. Roessler; and A. Werner. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aMoonen, Ben. _eeditor. _9305806 |
|
700 | 1 |
_aSchoof, René. _eeditor. _9305807 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817643973 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4447-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280694 _d280694 |