000 03940nam a22003975i 4500
001 280694
003 MX-SnUAN
005 20160429154034.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780817644475
_99780817644475
024 7 _a10.1007/0817644474
_2doi
035 _avtls000333495
039 9 _a201509030721
_bVLOAD
_c201404120634
_dVLOAD
_c201404090414
_dVLOAD
_y201402041112
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA564-609
100 1 _aGeer, Gerard.
_eeditor.
_9305805
245 1 0 _aNumber Fields and Function Fields—Two Parallel Worlds /
_cedited by Gerard Geer, Ben Moonen, René Schoof.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2005.
300 _axiv, 318 páginas 7 tables.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v239
500 _aSpringer eBooks
505 0 _aArithmetic over Function Fields: A Cohomological Approach -- Algebraic Stacks Whose Number of Points over Finite Fields is a Polynomial -- On a Problem of Miyaoka -- Monodromy Groups Associated to Non-Isotrivial Drinfeld Modules in Generic Characteristic -- Irreducible Values of Polynomials: A Non-Analogy -- Schemes over -- Line Bundles and p-Adic Characters -- Arithmetic Eisenstein Classes on the Siegel Space: Some Computations -- Uniformizing the Stacks of Abelian Sheaves -- Faltings’ Delta-Invariant of a Hyperelliptic Riemann Surface -- A Hirzebruch Proportionality Principle in Arakelov Geometry -- On the Height Conjecture for Algebraic Points on Curves Defined over Number Fields -- A Note on Absolute Derivations and Zeta Functions -- On the Order of Certain Characteristic Classes of the Hodge Bundle of Semi-Abelian Schemes -- A Note on the Manin-Mumford Conjecture.
520 _aEver since the analogy between number fields and function fields was discovered, it has been a source of inspiration for new ideas, and a long history has not in any way detracted from the appeal of the subject. As a deeper understanding of this analogy could have tremendous consequences, the search for a unified approach has become a sort of Holy Grail. The arrival of Arakelov's new geometry that tries to put the archimedean places on a par with the finite ones gave a new impetus and led to spectacular success in Faltings' hands. There are numerous further examples where ideas or techniques from the more geometrically-oriented world of function fields have led to new insights in the more arithmetically-oriented world of number fields, or vice versa. These invited articles by leading researchers in the field explore various aspects of the parallel worlds of function fields and number fields. Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives. This volume is aimed at a wide audience of graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections. Contributors: G. Böckle; T. van den Bogaart; H. Brenner; F. Breuer; K. Conrad; A. Deitmar; C. Deninger; B. Edixhoven; G. Faltings; U. Hartl; R. de Jong; K. Köhler; U. Kühn; J.C. Lagarias; V. Maillot; R. Pink; D. Roessler; and A. Werner.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aMoonen, Ben.
_eeditor.
_9305806
700 1 _aSchoof, René.
_eeditor.
_9305807
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817643973
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4447-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280694
_d280694