000 03242nam a22003615i 4500
001 280698
003 MX-SnUAN
005 20170705134203.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780817644512
_99780817644512
024 7 _a10.1007/0817644512
_2doi
035 _avtls000333499
039 9 _a201509030721
_bVLOAD
_c201404120635
_dVLOAD
_c201404090415
_dVLOAD
_y201402041112
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA639.5-640.7
100 1 _aMoszy?ska, Maria.
_eautor
_9305814
245 1 0 _aSelected Topics in Convex Geometry /
_cby Maria Moszy?ska.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2006.
300 _axvI, 226 páginas 30 ilustraciones Also available online.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aI -- Metric Spaces -- Subsets of Euclidean Space -- Basic Properties of Convex Sets -- Transformations of the Space Kn of Compact Convex Sets -- Rounding Theorems -- Convex Polytopes -- Functionals on the Space Kn. The Steiner Theorem -- The Hadwiger Theorems -- Applications of the Hadwiger Theorems -- II -- Curvature and Surface Area Measures -- Sets with positive reach. Convexity ring -- Selectors for Convex Bodies -- Polarity -- III -- Star Sets. Star Bodies -- Intersection Bodies -- Selectors for Star Bodies.
520 _aThe field of convex geometry has become a fertile subject of mathematical activity in the past few decades. This exposition, examining in detail those topics in convex geometry that are concerned with Euclidean space, is enriched by numerous examples, illustrations, and exercises, with a good bibliography and index. The theory of intrinsic volumes for convex bodies, along with the Hadwiger characterization theorems, whose proofs are based on beautiful geometric ideas such as the rounding theorems and the Steiner formula, are treated in Part 1. In Part 2 the reader is given a survey on curvature and surface area measures and extensions of the class of convex bodies. Part 3 is devoted to the important class of star bodies and selectors for convex and star bodies, including a presentation of two famous problems of geometric tomography: the Shephard problem and the Busemann–Petty problem. Selected Topics in Convex Geometry requires of the reader only a basic knowledge of geometry, linear algebra, analysis, topology, and measure theory. The book can be used in the classroom setting for graduates courses or seminars in convex geometry, geometric and convex combinatorics, and convex analysis and optimization. Researchers in pure and applied areas will also benefit from the book.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817643966
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4451-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280698
_d280698