000 03927nam a22004095i 4500
001 280699
003 MX-SnUAN
005 20160429154034.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780817645304
_99780817645304
024 7 _a10.1007/9780817645304
_2doi
035 _avtls000333537
039 9 _a201509030802
_bVLOAD
_c201404130445
_dVLOAD
_c201404092234
_dVLOAD
_y201402041113
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aMaeda, Yoshiaki.
_eeditor.
_9305815
245 1 0 _aFrom Geometry to Quantum Mechanics :
_bIn Honor of Hideki Omori /
_cedited by Yoshiaki Maeda, Takushiro Ochiai, Peter Michor, Akira Yoshioka.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2007.
300 _axvii, 324 páginas, 7 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v252
500 _aSpringer eBooks
505 0 _aGlobal Analysis and Infinite-Dimensional Lie Groups -- Aspects of Stochastic Global Analysis -- A Lie Group Structure for Automorphisms of a Contact Weyl Manifold -- Riemannian Geometry -- Projective Structures of a Curve in a Conformal Space -- Deformations of Surfaces Preserving Conformal or Similarity Invariants -- Global Structures of Compact Conformally Flat Semi-Symmetric Spaces of Dimension 3 and of Non-Constant Curvature -- Differential Geometry of Analytic Surfaces with Singularities -- Symplectic Geometry and Poisson Geometry -- The Integration Problem for Complex Lie Algebroids -- Reduction, Induction and Ricci Flat Symplectic Connections -- Local Lie Algebra Determines Base Manifold -- Lie Algebroids Associated with Deformed Schouten Bracket of 2-Vector Fields -- Parabolic Geometries Associated with Differential Equations of Finite Type -- Quantizations and Noncommutative Geometry -- Toward Geometric Quantum Theory -- Resonance Gyrons and Quantum Geometry -- A Secondary Invariant of Foliated Spaces and Type III? von Neumann Algebras -- The Geometry of Space-Time and Its Deformations from a Physical Perspective -- Geometric Objects in an Approach to Quantum Geometry.
520 _aThis volume is composed of invited expository articles by well-known mathematicians in differential geometry and mathematical physics that have been arranged in celebration of Hideki Omori's recent retirement from Tokyo University of Science and in honor of his fundamental contributions to these areas. The papers focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, infinite-dimensional Lie group theory, quantizations and noncommutative geometry, as well as applications of partial differential equations and variational methods to geometry. These articles will appeal to graduate students in mathematics and quantum mechanics, as well as researchers, differential geometers, and mathematical physicists. Contributors include: M. Cahen, D. Elworthy, A. Fujioka, M. Goto, J. Grabowski, S. Gutt, J. Inoguchi, M. Karasev, O. Kobayashi, Y. Maeda, K. Mikami, N. Miyazaki, T. Mizutani, H. Moriyoshi, H. Omori, T. Sasai, D. Sternheimer, A. Weinstein, K. Yamaguchi, T. Yatsui, and A. Yoshioka.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aOchiai, Takushiro.
_eeditor.
_9305816
700 1 _aMichor, Peter.
_eeditor.
_9305817
700 1 _aYoshioka, Akira.
_eeditor.
_9305818
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817645120
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4530-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280699
_d280699