000 | 03659nam a22003975i 4500 | ||
---|---|---|---|
001 | 280701 | ||
003 | MX-SnUAN | ||
005 | 20160429154035.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxu| o |||| 0|eng d | ||
020 |
_a9780817646226 _99780817646226 |
||
024 | 7 |
_a10.1007/9780817646226 _2doi |
|
035 | _avtls000333584 | ||
039 | 9 |
_a201509030205 _bVLOAD _c201404130454 _dVLOAD _c201404092243 _dVLOAD _y201402041114 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA331.7 | |
100 | 1 |
_aGreene, Robert E. _eautor _9305820 |
|
245 | 1 | 4 |
_aThe Geometry of Complex Domains / _cby Robert E. Greene, Kang-Tae Kim, Steven G. Krantz. |
264 | 1 |
_aBoston : _bBirkhäuser Boston, _c2011. |
|
300 |
_axiv, 303 páginas 14 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v291 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- 1 Preliminaries -- 2 Riemann Surfaces and Covering Spaces -- 3 The Bergman Kernel and Metric -- 4 Applications of Bergman Geometry -- 5 Lie Groups Realized as Automorphism Groups -- 6 The Significance of Large Isotropy Groups -- 7 Some Other Invariant Metrics -- 8 Automorphism Groups and Classification of Reinhardt Domains -- 9 The Scaling Method, I -- 10 The Scaling Method, II -- 11 Afterword -- Bibliography -- Index. | |
520 | _aThe geometry of complex domains is a subject with roots extending back more than a century, to the uniformization theorem of Poincaré and Koebe and the resulting proof of existence of canonical metrics for hyperbolic Riemann surfaces. In modern times, developments in several complex variables by Bergman, Hörmander, Andreotti-Vesentini, Kohn, Fefferman, and others have opened up new possibilities for the unification of complex function theory and complex geometry. In particular, geometry can be used to study biholomorphic mappings in remarkable ways. This book presents a complete picture of these developments. Beginning with the one-variable case—background information which cannot be found elsewhere in one place—the book presents a complete picture of the symmetries of domains from the point of view of holomorphic mappings. It describes all the relevant techniques, from differential geometry to Lie groups to partial differential equations to harmonic analysis. Specific concepts addressed include: covering spaces and uniformization; Bergman geometry; automorphism groups; invariant metrics; the scaling method. All modern results are accompanied by detailed proofs, and many illustrative examples and figures appear throughout. Written by three leading experts in the field, The Geometry of Complex Domains is the first book to provide systematic treatment of recent developments in the subject of the geometry of complex domains and automorphism groups of domains. A unique and definitive work in this subject area, it will be a valuable resource for graduate students and a useful reference for researchers in the field. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aKim, Kang-Tae. _eautor _9305821 |
|
700 | 1 |
_aKrantz, Steven G. _eautor _9304431 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817641399 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4622-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280701 _d280701 |