000 03659nam a22003975i 4500
001 280701
003 MX-SnUAN
005 20160429154035.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9780817646226
_99780817646226
024 7 _a10.1007/9780817646226
_2doi
035 _avtls000333584
039 9 _a201509030205
_bVLOAD
_c201404130454
_dVLOAD
_c201404092243
_dVLOAD
_y201402041114
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA331.7
100 1 _aGreene, Robert E.
_eautor
_9305820
245 1 4 _aThe Geometry of Complex Domains /
_cby Robert E. Greene, Kang-Tae Kim, Steven G. Krantz.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2011.
300 _axiv, 303 páginas 14 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v291
500 _aSpringer eBooks
505 0 _aPreface -- 1 Preliminaries -- 2 Riemann Surfaces and Covering Spaces -- 3 The Bergman Kernel and Metric -- 4 Applications of Bergman Geometry -- 5 Lie Groups Realized as Automorphism Groups -- 6 The Significance of Large Isotropy Groups -- 7 Some Other Invariant Metrics -- 8 Automorphism Groups and Classification of Reinhardt Domains -- 9 The Scaling Method, I -- 10 The Scaling Method, II -- 11 Afterword -- Bibliography -- Index.
520 _aThe geometry of complex domains is a subject with roots extending back more than a century, to the uniformization theorem of Poincaré and Koebe and the resulting proof of existence of canonical metrics for hyperbolic Riemann surfaces. In modern times, developments in several complex variables by Bergman, Hörmander, Andreotti-Vesentini, Kohn, Fefferman, and others have opened up new possibilities for the unification of complex function theory and complex geometry. In particular, geometry can be used to study biholomorphic mappings in remarkable ways. This book presents a complete picture of these developments. Beginning with the one-variable case—background information which cannot be found elsewhere in one place—the book presents a complete picture of the symmetries of domains from the point of view of holomorphic mappings. It describes all the relevant techniques, from differential geometry to Lie groups to partial differential equations to harmonic analysis. Specific concepts addressed include: covering spaces and uniformization; Bergman geometry; automorphism groups; invariant metrics; the scaling method. All modern results are accompanied by detailed proofs, and many illustrative examples and figures appear throughout. Written by three leading experts in the field, The Geometry of Complex Domains is the first book to provide systematic treatment of recent developments in the subject of the geometry of complex domains and automorphism groups of domains. A unique and definitive work in this subject area, it will be a valuable resource for graduate students and a useful reference for researchers in the field.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aKim, Kang-Tae.
_eautor
_9305821
700 1 _aKrantz, Steven G.
_eautor
_9304431
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817641399
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4622-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280701
_d280701