000 03792nam a22003735i 4500
001 280703
003 MX-SnUAN
005 20170705134203.0
007 cr nn 008mamaa
008 150903s2008 xxu| o |||| 0|eng d
020 _a9780817647339
_99780817647339
024 7 _a10.1007/9780817647339
_2doi
035 _avtls000333626
039 9 _a201509030803
_bVLOAD
_c201404130502
_dVLOAD
_c201404092251
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ295
100 1 _aZabczyk, Jerzy.
_eautor
_9305824
245 1 0 _aMathematical Control Theory :
_bAn Introduction /
_cby Jerzy Zabczyk.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2008.
300 _ax, 260 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aModern Birkhäuser Classics
500 _aSpringer eBooks
505 0 _aElements of classical control theory -- Controllability and observability -- Stability and stabilizability -- Realization theory -- Systems with constraints -- Nonlinear control systems -- Controllability and observability of nonlinear systems -- Stability and stabilizability -- Realization theory -- Optimal control -- Dynamic programming -- Dynamic programming for impulse control -- The maximum principle -- The existence of optimal strategies -- Infinite dimensional linear systems -- Linear control systems -- Controllability -- Stability and stabilizability -- Linear regulators in Hilbert spaces.
520 _aMathematical Control Theory: An Introduction presents, in a mathematically precise manner, a unified introduction to deterministic control theory. With the exception of a few more advanced concepts required for the final part of the book, the presentation requires only a knowledge of basic facts from linear algebra, differential equations, and calculus. In addition to classical concepts and ideas, the author covers the stabilization of nonlinear systems using topological methods, realization theory for nonlinear systems, impulsive control and positive systems, the control of rigid bodies, the stabilization of infinite dimensional systems, and the solution of minimum energy problems. The book will be ideal for a beginning graduate course in mathematical control theory, or for self study by professionals needing a complete picture of the mathematical theory that underlies the applications of control theory. "This book is designed as a graduate text on the mathematical theory of deterministic control. It covers a remarkable number of topics...The exposition is excellent, and the book is a joy to read. A novel one-semester course covering both linear and nonlinear systems could be given...The book is an excellent one for introducing a mathematician to control theory." — Bulletin of the AMS "The book is very well written from a mathematical point of view of control theory. The author deserves much credit for bringing out such a book which is a useful and welcome addition to books on the mathematics of control theory." — Control Theory and Advance Technology "At last! We did need an introductory textbook on control which can be read, understood, and enjoyed by anyone." — Gian-Carlo Rota, The Bulletin of Mathematics Books
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817647322
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4733-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280703
_d280703