000 | 03822nam a22003615i 4500 | ||
---|---|---|---|
001 | 280708 | ||
003 | MX-SnUAN | ||
005 | 20160429154035.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxk| o |||| 0|eng d | ||
020 |
_a9780857291158 _99780857291158 |
||
024 | 7 |
_a10.1007/9780857291158 _2doi |
|
035 | _avtls000333808 | ||
039 | 9 |
_a201509030804 _bVLOAD _c201404130537 _dVLOAD _c201404092326 _dVLOAD _y201402041133 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA21-27 | |
100 | 1 |
_aBacaër, Nicolas. _eautor _9305834 |
|
245 | 1 | 2 |
_aA Short History of Mathematical Population Dynamics / _cby Nicolas Bacaër. |
264 | 1 |
_aLondon : _bSpringer London, _c2011. |
|
300 |
_ax, 158 páginas 60 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aThe Fibonacci sequence (1202) -- Halley’s life table (1693) -- Euler and the geometric growth of populations (1748–1761) -- Daniel Bernoulli, d’Alembert and the inoculation of smallpox (1760) -- Malthus and the obstacles to geometric growth (1798) -- Verhulst and the logistic equation (1838) -- Bienaymé, Cournot and the extinction of family names (1845–1847) -- Mendel and heredity (1865) -- Galton, Watson and the extinction problem (1873–1875) -- Lotka and stable population theory (1907–1911) -- The Hardy–Weinberg law (1908) -- Ross and malaria (1911) -- Lotka, Volterra and the predator–prey system (1920–1926) -- Fisher and natural selection (1922) -- Yule and evolution (1924) -- McKendrick and Kermack on epidemic modelling (1926–1927) -- Haldane and mutations (1927) -- Erlang and Steffensen on the extinction problem (1929–1933) -- Wright and random genetic drift (1931) -- The diffusion of genes (1937) -- 21 The Leslie matrix (1945) -- 22 Percolation and epidemics (1957) -- 23 Game theory and evolution (1973) -- 24 Chaotic populations (1974) -- 25 China’s one-child policy (1980) -- 26 Some contemporary problems. | |
520 | _a<p>As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers.</p> <p>This book traces the history of population dynamics---a theoretical subject closely connected to genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, from Mendel's laws and the question of extinction of family names to percolation theory for the spread of epidemics, and chaotic populations, where determinism and randomness intertwine.</p> <p>The reader of this book will see, from a different perspective, the problems that scientists face when governments ask for reliable predictions to help control epidemics (AIDS, SARS, swine flu), manage renewable resources (fishing quotas, spread of genetically modified organisms) or anticipate demographic evolutions such as aging.</p> | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780857291141 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-115-8 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280708 _d280708 |