000 03822nam a22003615i 4500
001 280708
003 MX-SnUAN
005 20160429154035.0
007 cr nn 008mamaa
008 150903s2011 xxk| o |||| 0|eng d
020 _a9780857291158
_99780857291158
024 7 _a10.1007/9780857291158
_2doi
035 _avtls000333808
039 9 _a201509030804
_bVLOAD
_c201404130537
_dVLOAD
_c201404092326
_dVLOAD
_y201402041133
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA21-27
100 1 _aBacaër, Nicolas.
_eautor
_9305834
245 1 2 _aA Short History of Mathematical Population Dynamics /
_cby Nicolas Bacaër.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _ax, 158 páginas 60 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aThe Fibonacci sequence (1202) -- Halley’s life table (1693) -- Euler and the geometric growth of populations (1748–1761) -- Daniel Bernoulli, d’Alembert and the inoculation of smallpox (1760) -- Malthus and the obstacles to geometric growth (1798) -- Verhulst and the logistic equation (1838) -- Bienaymé, Cournot and the extinction of family names (1845–1847) -- Mendel and heredity (1865) -- Galton, Watson and the extinction problem (1873–1875) -- Lotka and stable population theory (1907–1911) -- The Hardy–Weinberg law (1908) -- Ross and malaria (1911) -- Lotka, Volterra and the predator–prey system (1920–1926) -- Fisher and natural selection (1922) -- Yule and evolution (1924) -- McKendrick and Kermack on epidemic modelling (1926–1927) -- Haldane and mutations (1927) -- Erlang and Steffensen on the extinction problem (1929–1933) -- Wright and random genetic drift (1931) -- The diffusion of genes (1937) -- 21 The Leslie matrix (1945) -- 22 Percolation and epidemics (1957) -- 23 Game theory and evolution (1973) -- 24 Chaotic populations (1974) -- 25 China’s one-child policy (1980) -- 26 Some contemporary problems.
520 _a<p>As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers.</p> <p>This book traces the history of population dynamics---a theoretical subject closely connected to  genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, from Mendel's laws and the question of extinction of family names to  percolation theory for the spread of epidemics, and chaotic populations, where determinism and randomness intertwine.</p> <p>The reader of this book will see, from a different perspective, the problems that scientists face when  governments ask for reliable predictions to help control epidemics (AIDS, SARS, swine flu), manage renewable resources (fishing quotas, spread of genetically modified organisms) or anticipate demographic evolutions such as aging.</p>
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780857291141
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-115-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280708
_d280708