000 03246nam a22003735i 4500
001 280742
003 MX-SnUAN
005 20160429154036.0
007 cr nn 008mamaa
008 150903s2010 xxu| o |||| 0|eng d
020 _a9780817646349
_99780817646349
024 7 _a10.1007/9780817646349
_2doi
035 _avtls000333586
039 9 _a201509030205
_bVLOAD
_c201404130454
_dVLOAD
_c201404092244
_dVLOAD
_y201402041114
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aMallios, Anastasios.
_eautor
_9305888
245 1 0 _aModern Differential Geometry in Gauge Theories :
_bYang¿Mills Fields, Volume II /
_cby Anastasios Mallios.
250 _a1.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2010.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aYang–Mills Theory:General Theory -- Abstract Yang–Mills Theory -- Moduli Spaces of -Connections of Yang–Mills Fields -- Geometry of Yang–Mills -Connections -- General Relativity -- General Relativity, as a Gauge Theory. Singularities.
520 _aDifferential geometry, in the classical sense, is developed through the theory of smooth manifolds. Modern differential geometry from the author’s perspective is used in this work to describe physical theories of a geometric character without using any notion of calculus (smoothness). Instead, an axiomatic treatment of differential geometry is presented via sheaf theory (geometry) and sheaf cohomology (analysis). Using vector sheaves, in place of bundles, based on arbitrary topological spaces, this unique approach in general furthers new perspectives and calculations that generate unexpected potential applications. Modern Differential Geometry in Gauge Theories is a two-volume research monograph that systematically applies a sheaf-theoretic approach to such physical theories as gauge theory. Beginning with Volume 1, the focus is on Maxwell fields. All the basic concepts of this mathematical approach are formulated and used thereafter to describe elementary particles, electromagnetism, and geometric prequantization. Maxwell fields are fully examined and classified in the language of sheaf theory and sheaf cohomology. Continuing in Volume 2, this sheaf-theoretic approach is applied to Yang–Mills fields in general. The text contains a wealth of detailed and rigorous computations and will appeal to mathematicians and physicists, along with advanced undergraduate and graduate students, interested in applications of differential geometry to physical theories such as general relativity, elementary particle physics and quantum gravity.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817643799
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4634-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280742
_d280742