000 02955nam a22003855i 4500
001 280743
003 MX-SnUAN
005 20160429154036.0
007 cr nn 008mamaa
008 150903s2009 xxu| o |||| 0|eng d
020 _a9780817646356
_99780817646356
024 7 _a10.1007/b78335
_2doi
035 _avtls000333587
039 9 _a201509031104
_bVLOAD
_c201405070517
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aTatsien, Li.
_eautor
_9305889
245 1 0 _aGlobal Propagation of Regular Nonlinear Hyperbolic Waves /
_cby Li Tatsien, Wang Libin.
250 _a1st.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Nonlinear Differential Equations and Their Applications ;
_v76
500 _aSpringer eBooks
505 0 _aPreliminaries -- The Cauchy Problem -- The Cauchy Problem (Continued) -- Cauchy Problem on a Semibounded Initial Axis -- One-Sided Mixed Initial-Boundary Value Problem -- Generalized Riemann Problem -- Generalized Nonlinear Initial-Boundary Riemann Problem -- Inverse Generalized Riemann Problem -- Inverse Piston Problem.
520 _aThis monograph describes global propagation of regular nonlinear hyperbolic waves described by first-order quasilinear hyperbolic systems in one dimension. The exposition is clear, concise, and unfolds systematically, beginning with introductory material which leads to the original research of the authors. Using the concept of weak linear degeneracy and the method of (generalized) normalized coordinates, this book establishes a systematic theory for the global existence and blowup mechanism of regular nonlinear hyperbolic waves with small amplitude for the Cauchy problem, the Cauchy problem on a semi-bounded initial data, the one-sided mixed initial-boundary value problem, the generalized Riemann problem, the generalized nonlinear initial-boun dary Riemann problem, and some related inverse problems. Motivation is given via a number of physical examples from the areas of elastic materials, one-dimensional gas dynamics, and waves. Global Propagation of Regular Nonlinear Hyperbolic Waves will stimulate further research and help readers further understand important aspects and recent progress of regular nonlinear hyperbolic waves.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLibin, Wang.
_eautor
_9305890
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817642440
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b78335
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280743
_d280743