000 04212nam a22003975i 4500
001 280744
003 MX-SnUAN
005 20170705134204.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9780817647353
_99780817647353
024 7 _a10.1007/9780817647353
_2doi
035 _avtls000333627
039 9 _a201509030803
_bVLOAD
_c201404130502
_dVLOAD
_c201404092251
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA252.3
100 1 _aCattaneo, Alberto S.
_eeditor.
_9305891
245 1 0 _aHigher Structures in Geometry and Physics :
_bIn Honor of Murray Gerstenhaber and Jim Stasheff /
_cedited by Alberto S. Cattaneo, Anthony Giaquinto, Ping Xu.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2011.
300 _axv, 362 páginas 92 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v287
500 _aSpringer eBooks
505 0 _aTopics in Algebraic deformation theory -- Origins and breadth of the theory of higher homotopies -- The deformation philosophy, quantization and noncommutative space-time structures -- Differential geometry of Gerbes and differential forms -- Symplectic connections of Ricci type and star products -- Effective Batalin–Vilkovisky theories, equivariant configuration spaces and cyclic chains -- Noncommutative calculus and the Gauss-Manin connection -- The Lie algebra perturbation lemma -- Twisting Elements in Homotopy G-algebras -- Homological perturbation theory and homological mirror symmetry -- Categorification of acyclic cluster algebras: an introduction -- Poisson and symplectic functions in Lie algebroid theory -- The diagonal of the Stasheff polytope -- Permutahedra, HKR isomorphism and polydifferential Gerstenhaber-Schack complex -- Applications de la bi-quantification a la théorie de Lie -- Higher homotopy Hopf algebras found: A ten year retrospective.
520 _aThis book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics— such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics— and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. The ideas of higher homotopies and algebraic deformation have a growing number of theoretical applications and have played a prominent role in recent mathematical advances. For example, algebraic versions of higher homotopies have led eventually to the proof of the formality conjecture and the deformation quantization of Poisson manifolds. As observed in deformations and deformation philosophy, a basic observation is that higher homotopy structures behave much better than strict structures. Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. Higher Structures in Geometry and Physics is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures. Contributors: L. Breen, A.S. Cattaneo, M. Cahen, V.A. Dolgushev, G. Felder, A. Giaquinto, S. Gutt, J. Huebschmann, T. Kadeishvili, H. Kajiura, B. Keller, Y. Kosmann-Schwarzbach, J.-L. Loday, S.A. Merkulov, D. Sternheimer, D.E. Tamarkin, C. Torossian, B.L. Tsygan, S. Waldmann, R.N. Umble.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGiaquinto, Anthony.
_eeditor.
_9305892
700 1 _aXu, Ping.
_eeditor.
_9305893
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817647346
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4735-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280744
_d280744