000 | 04163nam a22003855i 4500 | ||
---|---|---|---|
001 | 280746 | ||
003 | MX-SnUAN | ||
005 | 20170705134204.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxu| o |||| 0|eng d | ||
020 |
_a9780817647414 _99780817647414 |
||
024 | 7 |
_a10.1007/9780817647414 _2doi |
|
035 | _avtls000333629 | ||
039 | 9 |
_a201509030803 _bVLOAD _c201404130503 _dVLOAD _c201404092252 _dVLOAD _y201402041115 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA252.3 | |
100 | 1 |
_aNeeb, Karl-Hermann. _eeditor. _9303526 |
|
245 | 1 | 0 |
_aDevelopments and Trends in Infinite-Dimensional Lie Theory / _cedited by Karl-Hermann Neeb, Arturo Pianzola. |
264 | 1 |
_aBoston : _bBirkhäuser Boston, _c2011. |
|
300 |
_aviii, 492 páginas 9 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v288 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Part A: Infinite-Dimensional Lie (Super-)Algebras -- Isotopy for Extended Affine Lie Algebras and Lie Tori -- Remarks on the Isotriviality of Multiloop Algebras -- Extended Affine Lie Algebras and Other Generalizations of Affine Lie Algebras – A Survey -- Tensor Representations of Classical Locally Finite Lie Algebras -- Lie Algebras, Vertex Algebras, and Automorphic Forms -- Kac–Moody Superalgebras and Integrability -- Part B: Geometry of Infinite-Dimensional Lie (Transformation) Groups -- Jordan Structures and Non-Associative Geometry -- Direct Limits of Infinite-Dimensional Lie Groups -- Lie Groups of Bundle Automorphisms and Their Extensions -- Gerbes and Lie Groups -- Part C: Representation Theory of Infinite-Dimensional Lie Groups Functional Analytic Background for a Theory of Infinite- Dimensional Reductive Lie Groups -- Heat Kernel Measures and Critical Limits -- Coadjoint Orbits and the Beginnings of a Geometric Representation Theory -- Infinite-Dimensional Multiplicity-Free Spaces I: Limits of Compact Commutative Spaces -- Index. | |
520 | _aThis collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups. Part (A) is mainly concerned with the structure and representation theory of infinite-dimensional Lie algebras and contains articles on the structure of direct-limit Lie algebras, extended affine Lie algebras and loop algebras, as well as representations of loop algebras and Kac–Moody superalgebras. The articles in Part (B) examine connections between infinite-dimensional Lie theory and geometry. The topics range from infinite-dimensional groups acting on fiber bundles, corresponding characteristic classes and gerbes, to Jordan-theoretic geometries and new results on direct-limit groups. The analytic representation theory of infinite-dimensional Lie groups is still very much underdeveloped. The articles in Part (C) develop new, promising methods based on heat kernels, multiplicity freeness, Banach–Lie–Poisson spaces, and infinite-dimensional generalizations of reductive Lie groups. Contributors: B. Allison, D. Belti??, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aPianzola, Arturo. _eeditor. _9305897 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817647407 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4741-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280746 _d280746 |