000 | 03382nam a22003855i 4500 | ||
---|---|---|---|
001 | 280762 | ||
003 | MX-SnUAN | ||
005 | 20160429154037.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxk| o |||| 0|eng d | ||
020 |
_a9780857296009 _99780857296009 |
||
024 | 7 |
_a10.1007/9780857296009 _2doi |
|
035 | _avtls000333932 | ||
039 | 9 |
_a201509030754 _bVLOAD _c201404130601 _dVLOAD _c201404092350 _dVLOAD _y201402041136 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA164-167.2 | |
100 | 1 |
_aCamina, Alan. _eautor _9305931 |
|
245 | 1 | 3 |
_aAn Introduction to Enumeration / _cby Alan Camina, Barry Lewis. |
264 | 1 |
_aLondon : _bSpringer London, _c2011. |
|
300 |
_axii, 232 páginas 62 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Undergraduate Mathematics Series, _x1615-2085 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aWhat Is Enumeration? -- Generating Functions Count -- Working with Generating Functions -- Permutation Groups -- Matrices, Sequences and Sums -- Group Actions and Counting -- Exponential Generating Functions -- Graphs -- partitions and Paths. | |
520 | _aWritten for students taking a second or third year undergraduate course in mathematics or computer science, this book is the ideal companion to a course in enumeration. Enumeration is a branch of combinatorics where the fundamental subject matter is numerous methods of pattern formation and counting. An Introduction to Enumeration provides a comprehensive and practical introduction to this subject giving a clear account of fundamental results and a thorough grounding in the use of powerful techniques and tools. Two major themes run in parallel through the book, generating functions and group theory. The former theme takes enumerative sequences and then uses analytic tools to discover how they are made up. Group theory provides a concise introduction to groups and illustrates how the theory can be used to count the number of symmetries a particular object has. These enrich and extend basic group ideas and techniques. The authors present their material through examples that are carefully chosen to establish key results in a natural setting. The aim is to progressively build fundamental theorems and techniques. This development is interspersed with exercises that consolidate ideas and build confidence. Some exercises are linked to particular sections while others range across a complete chapter. Throughout, there is an attempt to present key enumerative ideas in a graphic way, using diagrams to make them immediately accessible. The development assumes some basic group theory, a familiarity with analytic functions and their power series expansion along with some basic linear algebra. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aLewis, Barry. _eautor _9305932 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780857295996 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-600-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280762 _d280762 |