000 03382nam a22003855i 4500
001 280762
003 MX-SnUAN
005 20160429154037.0
007 cr nn 008mamaa
008 150903s2011 xxk| o |||| 0|eng d
020 _a9780857296009
_99780857296009
024 7 _a10.1007/9780857296009
_2doi
035 _avtls000333932
039 9 _a201509030754
_bVLOAD
_c201404130601
_dVLOAD
_c201404092350
_dVLOAD
_y201402041136
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA164-167.2
100 1 _aCamina, Alan.
_eautor
_9305931
245 1 3 _aAn Introduction to Enumeration /
_cby Alan Camina, Barry Lewis.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _axii, 232 páginas 62 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Undergraduate Mathematics Series,
_x1615-2085
500 _aSpringer eBooks
505 0 _aWhat Is Enumeration? -- Generating Functions Count -- Working with Generating Functions -- Permutation Groups -- Matrices, Sequences and Sums -- Group Actions and Counting -- Exponential Generating Functions -- Graphs -- partitions and Paths.
520 _aWritten for students taking a second or third year undergraduate course in mathematics or computer science, this book is the ideal companion to a course in enumeration. Enumeration is a branch of combinatorics where the fundamental subject matter is numerous methods of pattern formation and counting. An Introduction to Enumeration provides a comprehensive and practical introduction to this subject giving a clear account of fundamental results and a thorough grounding in the use of powerful techniques and tools. Two major themes run in parallel through the book,  generating functions and group theory. The former theme takes enumerative sequences and then uses analytic tools to discover how they are made up. Group theory provides a concise introduction to groups and illustrates how the theory can be used  to count the number of symmetries a particular object has. These enrich and extend basic group ideas and techniques. The authors present their material through examples that are carefully chosen to establish key results in a natural setting. The aim is to progressively build fundamental theorems and techniques. This development is interspersed with exercises that consolidate ideas and build confidence. Some exercises are linked to particular sections while others range across a complete chapter. Throughout, there is an attempt to present key enumerative ideas in a graphic way, using diagrams to make them immediately accessible. The development assumes some basic group theory, a familiarity with analytic functions and their power series expansion along with  some basic linear algebra.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLewis, Barry.
_eautor
_9305932
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780857295996
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-600-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280762
_d280762