000 03132nam a22003735i 4500
001 280791
003 MX-SnUAN
005 20160429154038.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780817646370
_99780817646370
024 7 _a10.1007/9780817646370
_2doi
035 _avtls000333588
039 9 _a201509030205
_bVLOAD
_c201404130454
_dVLOAD
_c201404092244
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aKichenassamy, Satyanad.
_eautor
_9305973
245 1 0 _aFuchsian Reduction :
_bApplications to Geometry, Cosmology, and Mathematical Physics /
_cby Satyanad Kichenassamy.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2007.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Nonlinear Differential Equations and Their Applications ;
_v71
500 _aSpringer eBooks
505 0 _aFuchsian Reduction -- Formal Series -- General Reduction Methods -- Theory of Fuchsian Partial Di?erential Equations -- Convergent Series Solutions of Fuchsian Initial-Value Problems -- Fuchsian Initial-Value Problems in Sobolev Spaces -- Solution of Fuchsian Elliptic Boundary-Value Problems -- Applications -- Applications in Astronomy -- Applications in General Relativity -- Applications in Differential Geometry -- Applications to Nonlinear Waves -- Boundary Blowup for Nonlinear Elliptic Equations -- Background Results -- Distance Function and Hölder Spaces -- Nash–Moser Inverse Function Theorem.
520 _aFuchsian reduction is a method for representing solutions of nonlinear PDEs near singularities. The technique has multiple applications including soliton theory, Einstein's equations and cosmology, stellar models, laser collapse, conformal geometry and combustion. Developed in the 1990s for semilinear wave equations, Fuchsian reduction research has grown in response to those problems in pure and applied mathematics where numerical computations fail. This work unfolds systematically in four parts, interweaving theory and applications. The case studies examined in Part III illustrate the impact of reduction techniques, and may serve as prototypes for future new applications. In the same spirit, most chapters include a problem section. Background results and solutions to selected problems close the volume. This book can be used as a text in graduate courses in pure or applied analysis, or as a resource for researchers working with singularities in geometry and mathematical physics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817643522
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4637-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280791
_d280791