000 | 03132nam a22003735i 4500 | ||
---|---|---|---|
001 | 280791 | ||
003 | MX-SnUAN | ||
005 | 20160429154038.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 xxu| o |||| 0|eng d | ||
020 |
_a9780817646370 _99780817646370 |
||
024 | 7 |
_a10.1007/9780817646370 _2doi |
|
035 | _avtls000333588 | ||
039 | 9 |
_a201509030205 _bVLOAD _c201404130454 _dVLOAD _c201404092244 _dVLOAD _y201402041115 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA370-380 | |
100 | 1 |
_aKichenassamy, Satyanad. _eautor _9305973 |
|
245 | 1 | 0 |
_aFuchsian Reduction : _bApplications to Geometry, Cosmology, and Mathematical Physics / _cby Satyanad Kichenassamy. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2007. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Nonlinear Differential Equations and Their Applications ; _v71 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aFuchsian Reduction -- Formal Series -- General Reduction Methods -- Theory of Fuchsian Partial Di?erential Equations -- Convergent Series Solutions of Fuchsian Initial-Value Problems -- Fuchsian Initial-Value Problems in Sobolev Spaces -- Solution of Fuchsian Elliptic Boundary-Value Problems -- Applications -- Applications in Astronomy -- Applications in General Relativity -- Applications in Differential Geometry -- Applications to Nonlinear Waves -- Boundary Blowup for Nonlinear Elliptic Equations -- Background Results -- Distance Function and Hölder Spaces -- Nash–Moser Inverse Function Theorem. | |
520 | _aFuchsian reduction is a method for representing solutions of nonlinear PDEs near singularities. The technique has multiple applications including soliton theory, Einstein's equations and cosmology, stellar models, laser collapse, conformal geometry and combustion. Developed in the 1990s for semilinear wave equations, Fuchsian reduction research has grown in response to those problems in pure and applied mathematics where numerical computations fail. This work unfolds systematically in four parts, interweaving theory and applications. The case studies examined in Part III illustrate the impact of reduction techniques, and may serve as prototypes for future new applications. In the same spirit, most chapters include a problem section. Background results and solutions to selected problems close the volume. This book can be used as a text in graduate courses in pure or applied analysis, or as a resource for researchers working with singularities in geometry and mathematical physics. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817643522 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4637-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280791 _d280791 |