000 | 03636nam a22003975i 4500 | ||
---|---|---|---|
001 | 280792 | ||
003 | MX-SnUAN | ||
005 | 20160429154038.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 xxu| o |||| 0|eng d | ||
020 |
_a9780817646394 _99780817646394 |
||
024 | 7 |
_a10.1007/9780817646394 _2doi |
|
035 | _avtls000333589 | ||
039 | 9 |
_a201509030206 _bVLOAD _c201404130454 _dVLOAD _c201404092244 _dVLOAD _y201402041115 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA241-247.5 | |
100 | 1 |
_aGan, Wee Teck. _eeditor. _9305974 |
|
245 | 1 | 0 |
_aEisenstein Series and Applications / _cedited by Wee Teck Gan, Stephen S. Kudla, Yuri Tschinkel. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2008. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v258 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aTwisted Weyl Group Multiple Dirichlet Series: The Stable Case -- A Topological Model for Some Summand of the Eisenstein Cohomology of Congruence Subgroups -- The Saito-Kurokawa Space of PGSp4 and Its Transfer to Inner Forms -- Values of Archimedean Zeta Integrals for Unitary Groups -- A Simple Proof of Rationality of Siegel-Weil Eisenstein Series -- Residues of Eisenstein Series and Related Problems -- Some Extensions of the Siegel-Weil Formula -- A Remark on Eisenstein Series -- Arithmetic Aspects of the Theta Correspondence and Periods of Modular Forms -- Functoriality and Special Values of L-Functions -- Bounds for Matrix Coefficients and Arithmetic Applications. | |
520 | _aEisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas that are not usually interacting with each other, this volume introduces diverse users of Eisenstein series to a variety of important applications. With this juxtaposition of perspectives, the reader obtains deeper insights into the arithmetic of Eisenstein series. The exposition focuses on the common structural properties of Eisenstein series occurring in many related applications that have arisen in several recent developments in arithmetic: Arakelov intersection theory on Shimura varieties, special values of L-functions and Iwasawa theory, and equidistribution of rational/integer points on homogeneous varieties. Key questions that are considered include: Is it possible to identify a class of Eisenstein series whose Fourier coefficients (resp. special values) encode significant arithmetic information? Do such series fit into p-adic families? Are the Eisenstein series that arise in counting problems of this type? Contributors include: B. Brubaker, D. Bump, J. Franke, S. Friedberg, W.T. Gan, P. Garrett, M. Harris, D. Jiang, S.S. Kudla, E. Lapid, K. Prasanna, A. Raghuram, F. Shahidi, R. Takloo-Bighash | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aKudla, Stephen S. _eeditor. _9305975 |
|
700 | 1 |
_aTschinkel, Yuri. _eeditor. _9305755 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817644963 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4639-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280792 _d280792 |