000 03636nam a22003975i 4500
001 280792
003 MX-SnUAN
005 20160429154038.0
007 cr nn 008mamaa
008 150903s2008 xxu| o |||| 0|eng d
020 _a9780817646394
_99780817646394
024 7 _a10.1007/9780817646394
_2doi
035 _avtls000333589
039 9 _a201509030206
_bVLOAD
_c201404130454
_dVLOAD
_c201404092244
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA241-247.5
100 1 _aGan, Wee Teck.
_eeditor.
_9305974
245 1 0 _aEisenstein Series and Applications /
_cedited by Wee Teck Gan, Stephen S. Kudla, Yuri Tschinkel.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v258
500 _aSpringer eBooks
505 0 _aTwisted Weyl Group Multiple Dirichlet Series: The Stable Case -- A Topological Model for Some Summand of the Eisenstein Cohomology of Congruence Subgroups -- The Saito-Kurokawa Space of PGSp4 and Its Transfer to Inner Forms -- Values of Archimedean Zeta Integrals for Unitary Groups -- A Simple Proof of Rationality of Siegel-Weil Eisenstein Series -- Residues of Eisenstein Series and Related Problems -- Some Extensions of the Siegel-Weil Formula -- A Remark on Eisenstein Series -- Arithmetic Aspects of the Theta Correspondence and Periods of Modular Forms -- Functoriality and Special Values of L-Functions -- Bounds for Matrix Coefficients and Arithmetic Applications.
520 _aEisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas that are not usually interacting with each other, this volume introduces diverse users of Eisenstein series to a variety of important applications. With this juxtaposition of perspectives, the reader obtains deeper insights into the arithmetic of Eisenstein series. The exposition focuses on the common structural properties of Eisenstein series occurring in many related applications that have arisen in several recent developments in arithmetic: Arakelov intersection theory on Shimura varieties, special values of L-functions and Iwasawa theory, and equidistribution of rational/integer points on homogeneous varieties. Key questions that are considered include: Is it possible to identify a class of Eisenstein series whose Fourier coefficients (resp. special values) encode significant arithmetic information? Do such series fit into p-adic families? Are the Eisenstein series that arise in counting problems of this type? Contributors include: B. Brubaker, D. Bump, J. Franke, S. Friedberg, W.T. Gan, P. Garrett, M. Harris, D. Jiang, S.S. Kudla, E. Lapid, K. Prasanna, A. Raghuram, F. Shahidi, R. Takloo-Bighash
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aKudla, Stephen S.
_eeditor.
_9305975
700 1 _aTschinkel, Yuri.
_eeditor.
_9305755
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817644963
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4639-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280792
_d280792