000 03257nam a22003735i 4500
001 280816
003 MX-SnUAN
005 20160429154039.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9780387878577
_99780387878577
024 7 _a10.1007/9780387878577
_2doi
035 _avtls000333201
039 9 _a201509030800
_bVLOAD
_c201404130354
_dVLOAD
_c201404092142
_dVLOAD
_y201402041105
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA21-27
100 1 _aFischer, Hans.
_eautor
_9306012
245 1 2 _aA History of the Central Limit Theorem :
_bFrom Classical to Modern Probability Theory /
_cby Hans Fischer.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _axvI, 402 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSources and Studies in the History of Mathematics and Physical Sciences
500 _aSpringer eBooks
505 0 _aPreface -- Introduction -- The central limit theorem from laplace to cauchy: changes in stochastic objectives and in analytical methods -- The hypothesis of elementary errors -- Chebyshev's and markov's contributions -- The way towards modern probability -- General limit problems -- Conclusion: the central limit theorem as a link between classical and modern probability -- Index -- Bibliography.
520 _aThis study aims to embed the history of the central limit theorem within the history of the development of probability theory from its classical to its modern shape, and, more generally, within the corresponding development of mathematics. The history of the central limit theorem is not only expressed in light of "technical" achievement, but is also tied to the intellectual scope of its advancement. The history starts with Laplace's 1810 approximation to distributions of linear combinations of large numbers of independent random variables and its modifications by Poisson, Dirichlet, and Cauchy, and it proceeds up to the discussion of limit theorems in metric spaces by Donsker and Mourier around 1950. This self-contained exposition additionally describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The importance of historical connections between the history of analysis and the history of probability theory is demonstrated in great detail. With a thorough discussion of mathematical concepts and ideas of proofs, the reader will be able to understand the mathematical details in light of contemporary development. Special terminology and notations of probability and statistics are used in a modest way and explained in historical context.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387878560
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-87857-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280816
_d280816