000 | 03257nam a22003735i 4500 | ||
---|---|---|---|
001 | 280816 | ||
003 | MX-SnUAN | ||
005 | 20160429154039.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxu| o |||| 0|eng d | ||
020 |
_a9780387878577 _99780387878577 |
||
024 | 7 |
_a10.1007/9780387878577 _2doi |
|
035 | _avtls000333201 | ||
039 | 9 |
_a201509030800 _bVLOAD _c201404130354 _dVLOAD _c201404092142 _dVLOAD _y201402041105 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA21-27 | |
100 | 1 |
_aFischer, Hans. _eautor _9306012 |
|
245 | 1 | 2 |
_aA History of the Central Limit Theorem : _bFrom Classical to Modern Probability Theory / _cby Hans Fischer. |
264 | 1 |
_aNew York, NY : _bSpringer New York, _c2011. |
|
300 |
_axvI, 402 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aSources and Studies in the History of Mathematics and Physical Sciences | |
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Introduction -- The central limit theorem from laplace to cauchy: changes in stochastic objectives and in analytical methods -- The hypothesis of elementary errors -- Chebyshev's and markov's contributions -- The way towards modern probability -- General limit problems -- Conclusion: the central limit theorem as a link between classical and modern probability -- Index -- Bibliography. | |
520 | _aThis study aims to embed the history of the central limit theorem within the history of the development of probability theory from its classical to its modern shape, and, more generally, within the corresponding development of mathematics. The history of the central limit theorem is not only expressed in light of "technical" achievement, but is also tied to the intellectual scope of its advancement. The history starts with Laplace's 1810 approximation to distributions of linear combinations of large numbers of independent random variables and its modifications by Poisson, Dirichlet, and Cauchy, and it proceeds up to the discussion of limit theorems in metric spaces by Donsker and Mourier around 1950. This self-contained exposition additionally describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The importance of historical connections between the history of analysis and the history of probability theory is demonstrated in great detail. With a thorough discussion of mathematical concepts and ideas of proofs, the reader will be able to understand the mathematical details in light of contemporary development. Special terminology and notations of probability and statistics are used in a modest way and explained in historical context. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387878560 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-87857-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280816 _d280816 |