000 03038nam a22003615i 4500
001 280834
003 MX-SnUAN
005 20170705134204.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780817644628
_99780817644628
024 7 _a10.1007/0817644628
_2doi
035 _avtls000333505
039 9 _a201509030721
_bVLOAD
_c201404120636
_dVLOAD
_c201404090416
_dVLOAD
_y201402041112
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA172-172.4
100 1 _aGrätzer, George.
_eautor
_9304276
245 1 4 _aThe Congruences of a Finite Lattice :
_bA Proof-by-Picture Approach /
_cby George Grätzer.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2006.
300 _axxii, 282 páginas 110 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aA Brief Introduction to Lattices -- Basic Concepts -- Special Concepts -- Congruences -- Basic Techniques -- Chopped Lattices -- Boolean Triples -- Cubic Extensions -- Representation Theorems -- The Dilworth Theorem -- Minimal Representations -- Semimodular Lattices -- Modular Lattices -- Uniform Lattices -- Extensions -- Sectionally Complemented Lattices -- Semimodular Lattices -- Isoform Lattices -- Independence Theorems -- Magic Wands -- Two Lattices -- Sublattices -- Ideals -- Tensor Extensions.
520 _aThe congruences of a lattice form the congruence lattice. In the past half-century, the study of congruence lattices has become a large and important field with a great number of interesting and deep results and many open problems. This self-contained exposition by one of the leading experts in lattice theory, George Grätzer, presents the major results on congruence lattices of finite lattices featuring the author's signature "Proof-by-Picture" method and its conversion to transparencies. Key features: * Includes the latest findings from a pioneering researcher in the field * Insightful discussion of techniques to construct "nice" finite lattices with given congruence lattices and "nice" congruence-preserving extensions * Contains complete proofs, an extensive bibliography and index, and nearly 80 open problems * Additional information provided by the author online at: http://www.maths.umanitoba.ca/homepages/gratzer.html/ The book is appropriate for a one-semester graduate course in lattice theory, yet is also designed as a practical reference for researchers studying lattices.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817632243
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4462-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280834
_d280834