000 | 03248nam a22003615i 4500 | ||
---|---|---|---|
001 | 280839 | ||
003 | MX-SnUAN | ||
005 | 20160429154039.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 xxu| o |||| 0|eng d | ||
020 |
_a9780817646424 _99780817646424 |
||
024 | 7 |
_a10.1007/9780817646424 _2doi |
|
035 | _avtls000333590 | ||
039 | 9 |
_a201509030205 _bVLOAD _c201404130455 _dVLOAD _c201404092244 _dVLOAD _y201402041115 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA150-272 | |
100 | 1 |
_aKnoebel, Arthur. _eautor _9300833 |
|
245 | 1 | 0 |
_aSheaves of Algebras over Boolean Spaces / _cby Arthur Knoebel. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston : _bImprint: Birkhäuser, _c2012. |
|
300 |
_axii, 331 páginas 63 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Introduction -- Algebra -- Tools -- Complexes and their Sheaves -- Boolean Subsemilattices -- Sheaves from Factor Congruences -- Shells -- Baer-Stone Shells -- Strict Shells -- Varieties Generated by Preprimal Algebras -- Return to General Algebras -- Further Examples Pointing to Future Research -- List of Symbols -- References -- Index. | |
520 | _aSheaves of Algebras over Boolean Spaces comprehensively covers sheaf theory as applied to universal algebra. Sheaves decompose general algebras into simpler pieces called the stalks. A classical case is commutative von Neumann regular rings, whose stalks are fields. Other classical theorems also extend to shells, a common generalization of rings and lattices. This text presents intuitive ideas from topology such as the notion of metric space and the concept of central idempotent from ring theory. These lead to the abstract notions of complex and factor element, respectively. Factor elements are defined by identities, discovered for shells for the first time, explaining why central elements in rings and lattices have their particular form. Categorical formulations of the many representations by sheaves begin with adjunctions and move to equivalences as the book progresses, generalizing Stone’s theorem for Boolean algebras. Half of the theorems provided in the text are new; the rest are presented in a coherent framework, starting with the most general, and proceeding to specific applications. Many open problems and research areas are outlined, including a final chapter summarizing applications of sheaves in diverse fields that were not covered earlier in the book. This monograph is suitable for graduate students and researchers, and it will serve as an excellent reference text for those who wish to learn about sheaves of algebras. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817642181 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4642-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280839 _d280839 |