000 03248nam a22003615i 4500
001 280839
003 MX-SnUAN
005 20160429154039.0
007 cr nn 008mamaa
008 150903s2012 xxu| o |||| 0|eng d
020 _a9780817646424
_99780817646424
024 7 _a10.1007/9780817646424
_2doi
035 _avtls000333590
039 9 _a201509030205
_bVLOAD
_c201404130455
_dVLOAD
_c201404092244
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA150-272
100 1 _aKnoebel, Arthur.
_eautor
_9300833
245 1 0 _aSheaves of Algebras over Boolean Spaces /
_cby Arthur Knoebel.
264 1 _aBoston, MA :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2012.
300 _axii, 331 páginas 63 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPreface -- Introduction -- Algebra -- Tools -- Complexes and their Sheaves -- Boolean Subsemilattices -- Sheaves from Factor Congruences -- Shells -- Baer-Stone Shells -- Strict Shells -- Varieties Generated by Preprimal Algebras -- Return to General Algebras -- Further Examples Pointing to Future Research -- List of Symbols -- References -- Index.
520 _aSheaves of Algebras over Boolean Spaces comprehensively covers sheaf theory as applied to universal algebra. Sheaves decompose general algebras into simpler pieces called the stalks. A classical case is commutative von Neumann regular rings, whose stalks are fields. Other classical theorems also extend to shells, a common generalization of rings and lattices. This text presents intuitive ideas from topology such as the notion of metric space and the concept of central idempotent from ring theory. These lead to the abstract notions of complex and factor element, respectively. Factor elements are defined by identities, discovered for shells for the first time, explaining why central elements in rings and lattices have their particular form. Categorical formulations of the many representations by sheaves begin with adjunctions and move to equivalences as the book progresses, generalizing Stone’s theorem for Boolean algebras. Half of the theorems provided in the text are new; the rest are presented in a coherent framework, starting with the most general, and proceeding to specific applications. Many open problems and research areas are outlined, including a final chapter summarizing applications of sheaves in diverse fields that were not covered earlier in the book. This monograph is suitable for graduate students and researchers, and it will serve as an excellent reference text for those who wish to learn about sheaves of algebras.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817642181
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4642-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280839
_d280839