000 04015nam a22004095i 4500
001 280859
003 MX-SnUAN
005 20160429154040.0
007 cr nn 008mamaa
008 150903s2011 xxk| o |||| 0|eng d
020 _a9780857297488
_99780857297488
024 7 _a10.1007/9780857297488
_2doi
035 _avtls000333980
039 9 _a201509030243
_bVLOAD
_c201404130610
_dVLOAD
_c201404092359
_dVLOAD
_y201402041137
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA1-939
100 1 _aPietikäinen, Matti.
_eautor
_9306080
245 1 0 _aComputer Vision Using Local Binary Patterns /
_cby Matti Pietikäinen, Abdenour Hadid, Guoying Zhao, Timo Ahonen.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2011.
300 _axvI, 212 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aComputational Imaging and Vision,
_x1381-6446 ;
_v40
500 _aSpringer eBooks
505 0 _aBackground -- Local binary patterns for still images -- Spatiotemporal LBP -- Texture classification and segmentation -- Description of interest regions -- Applications in image retrieval and 3D recognition -- Recognition and segmentation of dynamic textures -- Background subtraction -- Recognition of actions -- Face analysis using still images -- Face analysis using image sequences -- Visual recognition of spoken phrases -- LBP in different applications.
520 _aThe recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, biometrics, visual surveillance and video analysis.   Computer Vision Using Local Binary Patterns provides a detailed description of the LBP methods and their variants both in spatial and spatiotemporal domains. This comprehensive reference also provides an  excellent overview as to how texture methods can be utilized for solving different kinds of computer vision and image analysis problems. Source codes of the basic LBP algorithms, demonstrations, some databases and a comprehensive LBP bibliography can be found from an accompanying web site. Topics include:   - Local binary patterns and their variants in spatial and spatiotemporal domains - Texture classification and segmentation, description of interest regions - Applications in image retrieval and 3D recognition - Recognition and segmentation of dynamic textures - Background subtraction, recognition of actions - Face analysis using still images and image sequences, visual speech recognition - LBP in various applications   Written by pioneers of LBP, this book is an essential resource for researchers, professional engineers and graduate students in computer vision, image analysis and pattern recognition. The book will also be of interest to all those who work with specific applications of machine vision.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHadid, Abdenour.
_eautor
_9306081
700 1 _aZhao, Guoying.
_eautor
_9306082
700 1 _aAhonen, Timo.
_eautor
_9306083
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780857297471
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-748-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280859
_d280859