000 | 03778nam a22003855i 4500 | ||
---|---|---|---|
001 | 280880 | ||
003 | MX-SnUAN | ||
005 | 20170705134204.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 xxu| o |||| 0|eng d | ||
020 |
_a9780817644666 _99780817644666 |
||
024 | 7 |
_a10.1007/0817644660 _2doi |
|
035 | _avtls000333508 | ||
039 | 9 |
_a201509030721 _bVLOAD _c201404120637 _dVLOAD _c201404090417 _dVLOAD _y201402041113 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA252.3 | |
100 | 1 |
_aBorel, Armand. _eautor _9306116 |
|
245 | 1 | 0 |
_aCompactifications of Symmetric and Locally Symmetric Spaces / _cby Armand Borel, Lizhen Ji. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2006. |
|
300 |
_axiii, 479 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aMathematics: Theory & Applications | |
500 | _aSpringer eBooks | ||
505 | 0 | _aCompactifications of Riemannian Symmetric Spaces -- Review of Classical Compactifications of Symmetric Spaces -- Uniform Construction of Compactifications of Symmetric Spaces -- Properties of Compactifications of Symmetric Spaces -- Smooth Compactifications of Semisimple Symmetric Spaces -- Smooth Compactifications of Riemannian Symmetric Spaces G/K -- Semisimple Symmetric Spaces G/H -- The Real Points of Complex Symmetric Spaces Defined over ? -- The DeConcini-Procesi Compactification of a Complex Symmetric Space and Its Real Points -- The Oshima-Sekiguchi Compactification of G/K and Comparison with (?) -- Compactifications of Locally Symmetric Spaces -- Classical Compactifications of Locally Symmetric Spaces -- Uniform Construction of Compactifications of Locally Symmetric Spaces -- Properties of Compactifications of Locally Symmetric Spaces -- Subgroup Compactifications of ??G -- Metric Properties of Compactifications of Locally Symmetric Spaces ??X. | |
520 | _aNoncompact symmetric and locally symmetric spaces naturally appear in many mathematical theories, including analysis (representation theory, nonabelian harmonic analysis), number theory (automorphic forms), algebraic geometry (modulae) and algebraic topology (cohomology of discrete groups). In most applications it is necessary to form an appropriate compactification of the space. The literature dealing with such compactifications is vast. The main purpose of this book is to introduce uniform constructions of most of the known compactifications with emphasis on their geometric and topological structures. The book is divided into three parts. Part I studies compactifications of Riemannian symmetric spaces and their arithmetic quotients. Part II is a study of compact smooth manifolds. Part III studies the compactification of locally symmetric spaces. Familiarity with the theory of semisimple Lie groups is assumed, as is familiarity with algebraic groups defined over the rational numbers in later parts of the book, although most of the pertinent material is recalled as presented. Otherwise, the book is a self-contained reference aimed at graduate students and research mathematicians interested in the applications of Lie theory and representation theory to diverse fields of mathematics. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aJi, Lizhen. _eautor _9306117 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817632472 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4466-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280880 _d280880 |