000 03778nam a22003855i 4500
001 280880
003 MX-SnUAN
005 20170705134204.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780817644666
_99780817644666
024 7 _a10.1007/0817644660
_2doi
035 _avtls000333508
039 9 _a201509030721
_bVLOAD
_c201404120637
_dVLOAD
_c201404090417
_dVLOAD
_y201402041113
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA252.3
100 1 _aBorel, Armand.
_eautor
_9306116
245 1 0 _aCompactifications of Symmetric and Locally Symmetric Spaces /
_cby Armand Borel, Lizhen Ji.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2006.
300 _axiii, 479 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aMathematics: Theory & Applications
500 _aSpringer eBooks
505 0 _aCompactifications of Riemannian Symmetric Spaces -- Review of Classical Compactifications of Symmetric Spaces -- Uniform Construction of Compactifications of Symmetric Spaces -- Properties of Compactifications of Symmetric Spaces -- Smooth Compactifications of Semisimple Symmetric Spaces -- Smooth Compactifications of Riemannian Symmetric Spaces G/K -- Semisimple Symmetric Spaces G/H -- The Real Points of Complex Symmetric Spaces Defined over ? -- The DeConcini-Procesi Compactification of a Complex Symmetric Space and Its Real Points -- The Oshima-Sekiguchi Compactification of G/K and Comparison with (?) -- Compactifications of Locally Symmetric Spaces -- Classical Compactifications of Locally Symmetric Spaces -- Uniform Construction of Compactifications of Locally Symmetric Spaces -- Properties of Compactifications of Locally Symmetric Spaces -- Subgroup Compactifications of ??G -- Metric Properties of Compactifications of Locally Symmetric Spaces ??X.
520 _aNoncompact symmetric and locally symmetric spaces naturally appear in many mathematical theories, including analysis (representation theory, nonabelian harmonic analysis), number theory (automorphic forms), algebraic geometry (modulae) and algebraic topology (cohomology of discrete groups). In most applications it is necessary to form an appropriate compactification of the space. The literature dealing with such compactifications is vast. The main purpose of this book is to introduce uniform constructions of most of the known compactifications with emphasis on their geometric and topological structures. The book is divided into three parts. Part I studies compactifications of Riemannian symmetric spaces and their arithmetic quotients. Part II is a study of compact smooth manifolds. Part III studies the compactification of locally symmetric spaces. Familiarity with the theory of semisimple Lie groups is assumed, as is familiarity with algebraic groups defined over the rational numbers in later parts of the book, although most of the pertinent material is recalled as presented. Otherwise, the book is a self-contained reference aimed at graduate students and research mathematicians interested in the applications of Lie theory and representation theory to diverse fields of mathematics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aJi, Lizhen.
_eautor
_9306117
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817632472
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4466-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280880
_d280880