000 03718nam a22003615i 4500
001 280883
003 MX-SnUAN
005 20160429154041.0
007 cr nn 008mamaa
008 150903s2009 xxu| o |||| 0|eng d
020 _a9780817646455
_99780817646455
024 7 _a10.1007/b11856
_2doi
035 _avtls000333592
039 9 _a201509031112
_bVLOAD
_c201405070501
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aAndrica, Dorin.
_eautor
_9305810
245 1 0 _aNumber Theory :
_bStructures, Examples, and Problems /
_cby Dorin Andrica, Titu Andreescu.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aFundamentals -- Divisibility -- Powers of Integers -- Floor Function and Fractional Part -- Digits of Numbers -- Basic Principles in Number Theory -- Arithmetic Functions -- More on Divisibility -- Diophantine Equations -- Some Special Problems in Number Theory -- Problems Involving Binomial Coefficients -- Miscellaneous Problems -- Solutions to Additional Problems -- Divisibility -- Powers of Integers -- Floor Function and Fractional Part -- Digits of Numbers -- Basic Principles in Number Theory -- Arithmetic Functions -- More on Divisibility -- Diophantine Equations -- Some Special Problems in Number Theory -- Problems Involving Binomial Coefficients -- Miscellaneous Problems.
520 _aNumber theory, an ongoing rich area of mathematical exploration, is noted for its theoretical depth, with connections and applications to other fields from representation theory, to physics, cryptography, and more. While the forefront of number theory is replete with sophisticated and famous open problems, at its foundation are basic, elementary ideas that can stimulate and challenge beginning students. This lively introductory text focuses on a problem-solving approach to the subject. Key features of Number Theory: Structures, Examples, and Problems: * A rigorous exposition starts with the natural numbers and the basics. * Important concepts are presented with an example, which may also emphasize an application. The exposition moves systematically and intuitively to uncover deeper properties. * Topics include divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, quadratic residues, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems are covered. * Unique exercises reinforce and motivate the reader, with selected solutions to some of the problems. * Glossary, bibliography, and comprehensive index round out the text. Written by distinguished research mathematicians and renowned teachers, this text is a clear, accessible introduction to the subject and a source of fascinating problems and puzzles, from advanced high school students to undergraduates, their instructors, and general readers at all levels.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aAndreescu, Titu.
_eautor
_9303490
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817632458
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b11856
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280883
_d280883