000 | 03718nam a22003615i 4500 | ||
---|---|---|---|
001 | 280883 | ||
003 | MX-SnUAN | ||
005 | 20160429154041.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 xxu| o |||| 0|eng d | ||
020 |
_a9780817646455 _99780817646455 |
||
024 | 7 |
_a10.1007/b11856 _2doi |
|
035 | _avtls000333592 | ||
039 | 9 |
_a201509031112 _bVLOAD _c201405070501 _dVLOAD _y201402041115 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
100 | 1 |
_aAndrica, Dorin. _eautor _9305810 |
|
245 | 1 | 0 |
_aNumber Theory : _bStructures, Examples, and Problems / _cby Dorin Andrica, Titu Andreescu. |
264 | 1 |
_aBoston : _bBirkhäuser Boston, _c2009. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aFundamentals -- Divisibility -- Powers of Integers -- Floor Function and Fractional Part -- Digits of Numbers -- Basic Principles in Number Theory -- Arithmetic Functions -- More on Divisibility -- Diophantine Equations -- Some Special Problems in Number Theory -- Problems Involving Binomial Coefficients -- Miscellaneous Problems -- Solutions to Additional Problems -- Divisibility -- Powers of Integers -- Floor Function and Fractional Part -- Digits of Numbers -- Basic Principles in Number Theory -- Arithmetic Functions -- More on Divisibility -- Diophantine Equations -- Some Special Problems in Number Theory -- Problems Involving Binomial Coefficients -- Miscellaneous Problems. | |
520 | _aNumber theory, an ongoing rich area of mathematical exploration, is noted for its theoretical depth, with connections and applications to other fields from representation theory, to physics, cryptography, and more. While the forefront of number theory is replete with sophisticated and famous open problems, at its foundation are basic, elementary ideas that can stimulate and challenge beginning students. This lively introductory text focuses on a problem-solving approach to the subject. Key features of Number Theory: Structures, Examples, and Problems: * A rigorous exposition starts with the natural numbers and the basics. * Important concepts are presented with an example, which may also emphasize an application. The exposition moves systematically and intuitively to uncover deeper properties. * Topics include divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, quadratic residues, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems are covered. * Unique exercises reinforce and motivate the reader, with selected solutions to some of the problems. * Glossary, bibliography, and comprehensive index round out the text. Written by distinguished research mathematicians and renowned teachers, this text is a clear, accessible introduction to the subject and a source of fascinating problems and puzzles, from advanced high school students to undergraduates, their instructors, and general readers at all levels. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aAndreescu, Titu. _eautor _9303490 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817632458 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b11856 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280883 _d280883 |