000 03555nam a22003855i 4500
001 280891
003 MX-SnUAN
005 20160429154042.0
007 cr nn 008mamaa
008 150903s2010 xxk| o |||| 0|eng d
020 _a9780857291486
_99780857291486
024 7 _a10.1007/9780857291486
_2doi
035 _avtls000333819
039 9 _a201509030241
_bVLOAD
_c201404130539
_dVLOAD
_c201404092328
_dVLOAD
_y201402041133
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA297-299.4
100 1 _aGriffiths, David F.
_eautor
_9306138
245 1 0 _aNumerical Methods for Ordinary Differential Equations :
_bInitial Value Problems /
_cby David F. Griffiths, Desmond J. Higham.
264 1 _aLondon :
_bSpringer London,
_c2010.
300 _axiv, 271 páginas 69 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Undergraduate Mathematics Series,
_x1615-2085
500 _aSpringer eBooks
505 0 _aODEs—An Introduction -- Euler’s Method -- The Taylor Series Method -- Linear Multistep Methods—I: Construction and Consistency -- Linear Multistep Methods—II: Convergence and Zero-Stability -- Linear Multistep Methods—III: Absolute Stability -- Linear Multistep Methods—IV: Systems of ODEs -- Linear Multistep Methods—V: Solving Implicit Methods -- Runge–Kutta Method—I: Order Conditions -- Runge-Kutta Methods–II Absolute Stability -- Adaptive Step Size Selection -- Long-Term Dynamics -- Modified Equations -- Geometric Integration Part I—Invariants -- Geometric Integration Part II—Hamiltonian Dynamics -- Stochastic Differential Equations.
520 _aNumerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge-Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHigham, Desmond J.
_eautor
_9306139
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780857291479
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-148-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280891
_d280891