000 | 03555nam a22003855i 4500 | ||
---|---|---|---|
001 | 280891 | ||
003 | MX-SnUAN | ||
005 | 20160429154042.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2010 xxk| o |||| 0|eng d | ||
020 |
_a9780857291486 _99780857291486 |
||
024 | 7 |
_a10.1007/9780857291486 _2doi |
|
035 | _avtls000333819 | ||
039 | 9 |
_a201509030241 _bVLOAD _c201404130539 _dVLOAD _c201404092328 _dVLOAD _y201402041133 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA297-299.4 | |
100 | 1 |
_aGriffiths, David F. _eautor _9306138 |
|
245 | 1 | 0 |
_aNumerical Methods for Ordinary Differential Equations : _bInitial Value Problems / _cby David F. Griffiths, Desmond J. Higham. |
264 | 1 |
_aLondon : _bSpringer London, _c2010. |
|
300 |
_axiv, 271 páginas 69 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Undergraduate Mathematics Series, _x1615-2085 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aODEs—An Introduction -- Euler’s Method -- The Taylor Series Method -- Linear Multistep Methods—I: Construction and Consistency -- Linear Multistep Methods—II: Convergence and Zero-Stability -- Linear Multistep Methods—III: Absolute Stability -- Linear Multistep Methods—IV: Systems of ODEs -- Linear Multistep Methods—V: Solving Implicit Methods -- Runge–Kutta Method—I: Order Conditions -- Runge-Kutta Methods–II Absolute Stability -- Adaptive Step Size Selection -- Long-Term Dynamics -- Modified Equations -- Geometric Integration Part I—Invariants -- Geometric Integration Part II—Hamiltonian Dynamics -- Stochastic Differential Equations. | |
520 | _aNumerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge-Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aHigham, Desmond J. _eautor _9306139 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780857291479 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-148-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280891 _d280891 |