000 03377nam a22003735i 4500
001 280921
003 MX-SnUAN
005 20160429154043.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9780817646486
_99780817646486
024 7 _a10.1007/9780817646486
_2doi
035 _avtls000333594
039 9 _a201509030206
_bVLOAD
_c201404130455
_dVLOAD
_c201404092245
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aT57-57.97
100 1 _aDiBenedetto, Emmanuele.
_eautor
_9306191
245 1 0 _aClassical Mechanics :
_bTheory and Mathematical Modeling /
_cby Emmanuele DiBenedetto.
264 1 _aBoston, MA :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2011.
300 _axx, 351 páginas 63 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aCornerstones
500 _aSpringer eBooks
505 0 _aPreface -- Geometry of Motion -- Constraints and Lagrangian Coordinates -- Dynamics of a Point Mass -- Geometry of Masses -- Systems Dynamics -- The Lagrange Equations -- Precessions -- Variational Principles -- Bibliography -- Index.
520 _aClassical mechanics is a chief example of the scientific method organizing a "complex" collection of information into theoretically rigorous, unifying principles; in this sense, mechanics represents one of the highest forms of mathematical modeling. This textbook covers standard topics of a mechanics course, namely, the mechanics of rigid bodies, Lagrangian and Hamiltonian formalism, stability and small oscillations, an introduction to celestial mechanics, and Hamilton–Jacobi theory, but at the same time features unique examples—such as the spinning top including friction and gyroscopic compass—seldom appearing in this context. In addition, variational principles like Lagrangian and Hamiltonian dynamics are treated in great detail. Using a pedagogical approach, the author covers many topics that are gradually developed and motivated by classical examples. Through `Problems and Complements' sections at the end of each chapter, the work presents various questions in an extended presentation that is extremely useful for an interdisciplinary audience trying to master the subject. Beautiful illustrations, unique examples, and useful remarks are key features throughout the text. Classical Mechanics: Theory and Mathematical Modeling may serve as a textbook for advanced graduate students in mathematics, physics, engineering, and the natural sciences, as well as an excellent reference or self-study guide for applied mathematicians and mathematical physicists. Prerequisites include a working knowledge of linear algebra, multivariate calculus, the basic theory of ordinary differential equations, and elementary physics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817645267
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4648-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280921
_d280921