000 | 02745nam a22003615i 4500 | ||
---|---|---|---|
001 | 280935 | ||
003 | MX-SnUAN | ||
005 | 20160429154043.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxk| o |||| 0|eng d | ||
020 |
_a9780857291547 _99780857291547 |
||
024 | 7 |
_a10.1007/9780857291547 _2doi |
|
035 | _avtls000333821 | ||
039 | 9 |
_a201509030241 _bVLOAD _c201404130539 _dVLOAD _c201404092329 _dVLOAD _y201402041133 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aT385 | |
100 | 1 |
_aVince, John. _eautor _9306214 |
|
245 | 1 | 0 |
_aRotation Transforms for Computer Graphics / _cby John Vince. |
264 | 1 |
_aLondon : _bSpringer London, _c2011. |
|
300 |
_axvI, 258 páginas 106 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction -- Complex Numbers -- Vectors -- Matrices.-Quaternions -- Multivectors -- Rotation Transforms in the Plane.-Frames of Reference in the Plane -- Rotation Transforms in Space -- Frames of Reference in Space -- Quaternion Transforms in Space -- Bivector Rotors -- Conclusion -- Appendix A: Composite Point Rotation Sequences -- Appendix B: Composite Frame Rotation Sequences -- Appendix C: The Four n-Square Algebras -- Index. | |
520 | _aRotation transforms are used everywhere in computer graphics from rotating pictures in editing software, to providing an arbitrary view of a 3D virtual environment. Although the former is a trivial operation, the latter can be a challenging task. Rotation Transforms for Computer Graphics covers a wide range of mathematical techniques used for rotating points and frames of reference in the plane and 3D space. It includes many worked examples and over 100 illustrations that make it essential reading for students, academics, researchers and professional practitioners. The book includes introductory chapters on complex numbers, matrices, quaternions and geometric algebra, and further chapters on how these techniques are employed in 2D and 3D computer graphics. In particular, matrix and bivector transforms are developed and evaluated to rotate points in a fixed frame of reference, and vice versa. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780857291530 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-154-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280935 _d280935 |