000 03328nam a22003615i 4500
001 280972
003 MX-SnUAN
005 20160429154045.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780817644741
_99780817644741
024 7 _a10.1007/0817644741
_2doi
035 _avtls000333513
039 9 _a201509030721
_bVLOAD
_c201404120638
_dVLOAD
_c201404090418
_dVLOAD
_y201402041113
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aMallios, Anastasios.
_eautor
_9305888
245 1 0 _aModern Differential Geometry in Gauge Theories :
_bMaxwell Fields, Volume I /
_cby Anastasios Mallios.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2006.
300 _axvii, 293 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aMaxwell Fields: General Theory -- The Rudiments of Abstract Differential Geometry -- Elementary Particles: Sheaf-Theoretic Classification, by Spin-Structure, According to Selesnick’s Correspondence Principle -- Electromagnetism -- Cohomological Classification of Maxwell and Hermitian Maxwell Fields -- Geometric Prequantization.
520 _aDifferential geometry, in the classical sense, is developed through the theory of smooth manifolds. Modern differential geometry from the author’s perspective is used in this work to describe physical theories of a geometric character without using any notion of calculus (smoothness). Instead, an axiomatic treatment of differential geometry is presented via sheaf theory (geometry) and sheaf cohomology (analysis). Using vector sheaves, in place of bundles, based on arbitrary topological spaces, this unique approach in general furthers new perspectives and calculations that generate unexpected potential applications. Modern Differential Geometry in Gauge Theories is a two-volume research monograph that systematically applies a sheaf-theoretic approach to such physical theories as gauge theory. Beginning with Volume 1, the focus is on Maxwell fields. All the basic concepts of this mathematical approach are formulated and used thereafter to describe elementary particles, electromagnetism, and geometric prequantization. Maxwell fields are fully examined and classified in the language of sheaf theory and sheaf cohomology. Continuing in Volume 2, this sheaf-theoretic approach is applied to Yang–Mills fields in general. The text contains a wealth of detailed and rigorous computations and will appeal to mathematicians and physicists, along with advanced undergraduate and graduate students, interested in applications of differential geometry to physical theories such as general relativity, elementary particle physics and quantum gravity.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817643782
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4474-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280972
_d280972