000 03113nam a22003735i 4500
001 280982
003 MX-SnUAN
005 20160429154045.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780817646530
_99780817646530
024 7 _a10.1007/9780817646530
_2doi
035 _avtls000333598
039 9 _a201509030206
_bVLOAD
_c201404130456
_dVLOAD
_c201404092246
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aBorthwick, David.
_eautor
_9306283
245 1 0 _aSpectral Theory of Infinite-Area Hyperbolic Surfaces /
_cby David Borthwick.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2007.
300 _axI, 355 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v256
500 _aSpringer eBooks
505 0 _aHyperbolic Surfaces -- Compact and Finite-Area Surfaces -- Spectral Theory for the Hyperbolic Plane -- Model Resolvents for Cylinders -- TheResolvent -- Spectral and Scattering Theory -- Resonances and Scattering Poles -- Upper Bound for Resonances -- Selberg Zeta Function -- Wave Trace and Poisson Formula -- Resonance Asymptotics -- Inverse Spectral Geometry -- Patterson–Sullivan Theory -- Dynamical Approach to the Zeta Function.
520 _aThis book introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of dramatic recent developments in the field. These developments were prompted by advances in geometric scattering theory in the early 1990s which provided new tools for the study of resonances. Hyperbolic surfaces provide an ideal context in which to introduce these new ideas, with technical difficulties kept to a minimum. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, spectral theory, and ergodic theory. The book highlights these connections, at a level accessible to graduate students and researchers from a wide range of fields. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, characterization of the spectrum, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817645243
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4653-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280982
_d280982