000 | 03113nam a22003735i 4500 | ||
---|---|---|---|
001 | 280982 | ||
003 | MX-SnUAN | ||
005 | 20160429154045.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 xxu| o |||| 0|eng d | ||
020 |
_a9780817646530 _99780817646530 |
||
024 | 7 |
_a10.1007/9780817646530 _2doi |
|
035 | _avtls000333598 | ||
039 | 9 |
_a201509030206 _bVLOAD _c201404130456 _dVLOAD _c201404092246 _dVLOAD _y201402041115 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA370-380 | |
100 | 1 |
_aBorthwick, David. _eautor _9306283 |
|
245 | 1 | 0 |
_aSpectral Theory of Infinite-Area Hyperbolic Surfaces / _cby David Borthwick. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2007. |
|
300 |
_axI, 355 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v256 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aHyperbolic Surfaces -- Compact and Finite-Area Surfaces -- Spectral Theory for the Hyperbolic Plane -- Model Resolvents for Cylinders -- TheResolvent -- Spectral and Scattering Theory -- Resonances and Scattering Poles -- Upper Bound for Resonances -- Selberg Zeta Function -- Wave Trace and Poisson Formula -- Resonance Asymptotics -- Inverse Spectral Geometry -- Patterson–Sullivan Theory -- Dynamical Approach to the Zeta Function. | |
520 | _aThis book introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of dramatic recent developments in the field. These developments were prompted by advances in geometric scattering theory in the early 1990s which provided new tools for the study of resonances. Hyperbolic surfaces provide an ideal context in which to introduce these new ideas, with technical difficulties kept to a minimum. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, spectral theory, and ergodic theory. The book highlights these connections, at a level accessible to graduate students and researchers from a wide range of fields. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, characterization of the spectrum, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817645243 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4653-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280982 _d280982 |