000 03535nam a22003735i 4500
001 280989
003 MX-SnUAN
005 20160429154046.0
007 cr nn 008mamaa
008 150903s2011 xxk| o |||| 0|eng d
020 _a9780857291578
_99780857291578
024 7 _a10.1007/9780857291578
_2doi
035 _avtls000333822
039 9 _a201509030241
_bVLOAD
_c201404130540
_dVLOAD
_c201404092329
_dVLOAD
_y201402041133
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA150-272
100 1 _aBonnafé, Cédric.
_eautor
_9306296
245 1 0 _aRepresentations of SL2(Fq) /
_cby Cédric Bonnafé.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _axxii, 186 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAlgebra and Applications ;
_v13
500 _aSpringer eBooks
505 0 _aPart I Preliminaries -- Structure of SL2(Fq) -- The Geometry of the Drinfeld Curve -- Part II Ordinary Characters -- Harish-Chandra Induction -- Deligne-Lusztig Induction -- The Character Table -- Part III Modular Representations -- More about Characters of G and of its Sylow Subgroups -- Unequal Characteristic: Generalities -- Unequal Characteristic: Equivalences of Categories -- Unequal Characteristic: Simple Modules, Decomposition Matrices -- Equal Characteristic -- Part IV Complements -- Special Cases -- Deligne-Lusztig Theory: an Overview -- Part V Appendices -- A l-Adic Cohomology -- B Block Theory -- C Review of Reflection Groups.
520 _aDeligne-Lusztig theory aims to study representations of finite reductive groups by means of geometric methods, and particularly l-adic cohomology. Many excellent texts present, with different goals and perspectives, this theory in the general setting. This book focuses on the smallest non-trivial example, namely the group SL2(Fq), which not only provide the simplicity required for a complete description of the theory, but also the richness needed for illustrating the most delicate aspects. The development of Deligne-Lusztig theory was inspired by Drinfeld's example in 1974, and Representations of SL2(Fq) is based upon this example, and extends it to modular representation theory. To this end, the author makes use of fundamental results of l-adic cohomology. In order to efficiently use this machinery, a precise study of the geometric properties of the action of SL2(Fq) on the Drinfeld curve is conducted, with particular attention to the construction of quotients by various finite groups. At the end of the text, a succinct overview (without proof) of Deligne-Lusztig theory is given, as well as links to examples demonstrated in the text. With the provision of both a gentle introduction and several recent materials (for instance, Rouquier's theorem on derived equivalences of geometric nature), this book will be of use to graduate and postgraduate students, as well as researchers and lecturers with an interest in Deligne-Lusztig theory.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780857291561
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-157-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280989
_d280989