000 | 03551nam a22003975i 4500 | ||
---|---|---|---|
001 | 281070 | ||
003 | MX-SnUAN | ||
005 | 20160429154049.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 xxu| o |||| 0|eng d | ||
020 |
_a9780817644796 _99780817644796 |
||
024 | 7 |
_a10.1007/0817644792 _2doi |
|
035 | _avtls000333517 | ||
039 | 9 |
_a201509030722 _bVLOAD _c201404120638 _dVLOAD _c201404090418 _dVLOAD _y201402041113 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA641-670 | |
100 | 1 |
_aFels, Gregor. _eautor _9306448 |
|
245 | 1 | 0 |
_aCycle Spaces of Flag Domains : _bA Complex Geometric Viewpoint / _cby Gregor Fels, Alan Huckleberry, Joseph A. Wolf. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2006. |
|
300 |
_axx, 339 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v245 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _ato Flag Domain Theory -- Structure of Complex Flag Manifolds -- Real Group Orbits -- Orbit Structure for Hermitian Symmetric Spaces -- Open Orbits -- The Cycle Space of a Flag Domain -- Cycle Spaces as Universal Domains -- Universal Domains -- B-Invariant Hypersurfaces in MZ -- Orbit Duality via Momentum Geometry -- Schubert Slices in the Context of Duality -- Analysis of the Boundary of U -- Invariant Kobayashi-Hyperbolic Stein Domains -- Cycle Spaces of Lower-Dimensional Orbits -- Examples -- Analytic and Geometric Consequences -- The Double Fibration Transform -- Variation of Hodge Structure -- Cycles in the K3 Period Domain -- The Full Cycle Space -- Combinatorics of Normal Bundles of Base Cycles -- Methods for Computing H1(C; O) -- Classification for Simple with rank < rank -- Classification for rank = rank . | |
520 | _aThis monograph, divided into four parts, presents a comprehensive treatment and systematic examination of cycle spaces of flag domains. Assuming only a basic familiarity with the concepts of Lie theory and geometry, this work presents a complete structure theory for these cycle spaces, as well as their applications to harmonic analysis and algebraic geometry. Key features: * Accessible to readers from a wide range of fields, with all the necessary background material provided for the nonspecialist * Many new results presented for the first time * Driven by numerous examples * The exposition is presented from the complex geometric viewpoint, but the methods, applications and much of the motivation also come from real and complex algebraic groups and their representations, as well as other areas of geometry * Comparisons with classical Barlet cycle spaces are given * Good bibliography and index Researchers and graduate students in differential geometry, complex analysis, harmonic analysis, representation theory, transformation groups, algebraic geometry, and areas of global geometric analysis will benefit from this work. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aHuckleberry, Alan. _eautor _9306449 |
|
700 | 1 |
_aWolf, Joseph A. _eautor _9306450 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817643911 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4479-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281070 _d281070 |