000 03551nam a22003975i 4500
001 281070
003 MX-SnUAN
005 20160429154049.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780817644796
_99780817644796
024 7 _a10.1007/0817644792
_2doi
035 _avtls000333517
039 9 _a201509030722
_bVLOAD
_c201404120638
_dVLOAD
_c201404090418
_dVLOAD
_y201402041113
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aFels, Gregor.
_eautor
_9306448
245 1 0 _aCycle Spaces of Flag Domains :
_bA Complex Geometric Viewpoint /
_cby Gregor Fels, Alan Huckleberry, Joseph A. Wolf.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2006.
300 _axx, 339 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v245
500 _aSpringer eBooks
505 0 _ato Flag Domain Theory -- Structure of Complex Flag Manifolds -- Real Group Orbits -- Orbit Structure for Hermitian Symmetric Spaces -- Open Orbits -- The Cycle Space of a Flag Domain -- Cycle Spaces as Universal Domains -- Universal Domains -- B-Invariant Hypersurfaces in MZ -- Orbit Duality via Momentum Geometry -- Schubert Slices in the Context of Duality -- Analysis of the Boundary of U -- Invariant Kobayashi-Hyperbolic Stein Domains -- Cycle Spaces of Lower-Dimensional Orbits -- Examples -- Analytic and Geometric Consequences -- The Double Fibration Transform -- Variation of Hodge Structure -- Cycles in the K3 Period Domain -- The Full Cycle Space -- Combinatorics of Normal Bundles of Base Cycles -- Methods for Computing H1(C; O) -- Classification for Simple with rank < rank -- Classification for rank = rank .
520 _aThis monograph, divided into four parts, presents a comprehensive treatment and systematic examination of cycle spaces of flag domains. Assuming only a basic familiarity with the concepts of Lie theory and geometry, this work presents a complete structure theory for these cycle spaces, as well as their applications to harmonic analysis and algebraic geometry. Key features: * Accessible to readers from a wide range of fields, with all the necessary background material provided for the nonspecialist * Many new results presented for the first time * Driven by numerous examples * The exposition is presented from the complex geometric viewpoint, but the methods, applications and much of the motivation also come from real and complex algebraic groups and their representations, as well as other areas of geometry * Comparisons with classical Barlet cycle spaces are given * Good bibliography and index Researchers and graduate students in differential geometry, complex analysis, harmonic analysis, representation theory, transformation groups, algebraic geometry, and areas of global geometric analysis will benefit from this work.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHuckleberry, Alan.
_eautor
_9306449
700 1 _aWolf, Joseph A.
_eautor
_9306450
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817643911
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4479-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281070
_d281070