000 | 03069nam a22003855i 4500 | ||
---|---|---|---|
001 | 281072 | ||
003 | MX-SnUAN | ||
005 | 20160429154049.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 xxu| o |||| 0|eng d | ||
020 |
_a9780817644833 _99780817644833 |
||
024 | 7 |
_a10.1007/0817644830 _2doi |
|
035 | _avtls000333519 | ||
039 | 9 |
_a201509030722 _bVLOAD _c201404120639 _dVLOAD _c201404090419 _dVLOAD _y201402041113 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA641-670 | |
100 | 1 |
_aDragomir, Sorin. _eautor _9306453 |
|
245 | 1 | 0 |
_aDifferential Geometry and Analysis on CR Manifolds / _cby Sorin Dragomir, Giuseppe Tomassini. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2006. |
|
300 |
_axiv, 487 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v246 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aCR Manifolds -- The Fefferman Metric -- The CR Yamabe Problem -- Pseudoharmonic Maps -- Pseudo-Einsteinian Manifolds -- Pseudo-Hermitian Immersions -- Quasiconformal Mappings -- Yang-Mills Fields on CR Manifolds -- Spectral Geometry. | |
520 | _aThe study of CR manifolds lies at the intersection of three main mathematical disciplines: partial differential equations, complex analysis in several complex variables, and differential geometry. While the PDE and complex analytic aspects have been intensely studied in the last fifty years, much effort has recently been made to understand the differential geometric side of the subject. This monograph provides a unified presentation of several differential geometric aspects in the theory of CR manifolds and tangential Cauchy–Riemann equations. It presents the major differential geometric acheivements in the theory of CR manifolds, such as the Tanaka–Webster connection, Fefferman's metric, pseudo-Einstein structures and the Lee conjecture, CR immersions, subelliptic harmonic maps as a local manifestation of pseudoharmonic maps from a CR manifold, Yang–Mills fields on CR manifolds, to name a few. It also aims at explaining how certain results from analysis are employed in CR geometry. Motivated by clear exposition, many examples, explicitly worked-out geometric results, and stimulating unproved statements and comments referring to the most recent aspects of the theory, this monograph is suitable for researchers and graduate students in differential geometry, complex analysis, and PDEs. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aTomassini, Giuseppe. _eautor _9306454 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817643881 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4483-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281072 _d281072 |