000 03069nam a22003855i 4500
001 281072
003 MX-SnUAN
005 20160429154049.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780817644833
_99780817644833
024 7 _a10.1007/0817644830
_2doi
035 _avtls000333519
039 9 _a201509030722
_bVLOAD
_c201404120639
_dVLOAD
_c201404090419
_dVLOAD
_y201402041113
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aDragomir, Sorin.
_eautor
_9306453
245 1 0 _aDifferential Geometry and Analysis on CR Manifolds /
_cby Sorin Dragomir, Giuseppe Tomassini.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2006.
300 _axiv, 487 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v246
500 _aSpringer eBooks
505 0 _aCR Manifolds -- The Fefferman Metric -- The CR Yamabe Problem -- Pseudoharmonic Maps -- Pseudo-Einsteinian Manifolds -- Pseudo-Hermitian Immersions -- Quasiconformal Mappings -- Yang-Mills Fields on CR Manifolds -- Spectral Geometry.
520 _aThe study of CR manifolds lies at the intersection of three main mathematical disciplines: partial differential equations, complex analysis in several complex variables, and differential geometry. While the PDE and complex analytic aspects have been intensely studied in the last fifty years, much effort has recently been made to understand the differential geometric side of the subject. This monograph provides a unified presentation of several differential geometric aspects in the theory of CR manifolds and tangential Cauchy–Riemann equations. It presents the major differential geometric acheivements in the theory of CR manifolds, such as the Tanaka–Webster connection, Fefferman's metric, pseudo-Einstein structures and the Lee conjecture, CR immersions, subelliptic harmonic maps as a local manifestation of pseudoharmonic maps from a CR manifold, Yang–Mills fields on CR manifolds, to name a few. It also aims at explaining how certain results from analysis are employed in CR geometry. Motivated by clear exposition, many examples, explicitly worked-out geometric results, and stimulating unproved statements and comments referring to the most recent aspects of the theory, this monograph is suitable for researchers and graduate students in differential geometry, complex analysis, and PDEs.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aTomassini, Giuseppe.
_eautor
_9306454
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817643881
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4483-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281072
_d281072