000 | 03302nam a22003735i 4500 | ||
---|---|---|---|
001 | 281073 | ||
003 | MX-SnUAN | ||
005 | 20160429154049.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 xxu| o |||| 0|eng d | ||
020 |
_a9780817645786 _99780817645786 |
||
024 | 7 |
_a10.1007/9780817645786 _2doi |
|
035 | _avtls000333562 | ||
039 | 9 |
_a201509030205 _bVLOAD _c201404130449 _dVLOAD _c201404092239 _dVLOAD _y201402041114 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA351 | |
100 | 1 |
_aMumford, David. _eautor _9306355 |
|
245 | 1 | 0 |
_aTata Lectures on Theta II / _cby David Mumford. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston : _bImprint: Birkhäuser, _c2007. |
|
300 |
_axiv, 272 páginas 21 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aModern Birkhäuser Classics | |
500 | _aSpringer eBooks | ||
505 | 0 | _aAn Elementary Construction of Hyperelliptic Jacobians -- Review of background in algebraic geometry -- Divisors on hyperelliptic curves -- Algebraic construction of the Jacobian of a hyperelliptic curve -- The translation-invariant vector fields -- Neumann’s dynamical system -- Tying together the analytic Jacobian and algebraic Jacobian -- Theta characteristics and the fundamental Vanishing Property -- Frobenius’ theta formula -- Thomae’s formula and moduli of hyperelliptic curves -- Characterization of hyperelliptic period matrices -- The hyperelliptic p-function -- The Korteweg-deVries dynamical system -- Fay’s Trisecant Identity for Jacobian theta functions -- The Prime Form E(x,y). -- Fay’s Trisecant Identity -- Corollaries of the identity -- Applications to solutions of differential equations -- The Generalized Jacobian of a Singular Curve and its Theta Function -- Resolution of algebraic equations by theta constants -- Resolution of algebraic equations by theta constants. | |
520 | _aThe second in a series of three volumes surveying the theory of theta functions, this volume gives emphasis to the special properties of the theta functions associated with compact Riemann surfaces and how they lead to solutions of the Korteweg-de-Vries equations as well as other non-linear differential equations of mathematical physics. This book presents an explicit elementary construction of hyperelliptic Jacobian varieties and is a self-contained introduction to the theory of the Jacobians. It also ties together nineteenth-century discoveries due to Jacobi, Neumann, and Frobenius with recent discoveries of Gelfand, McKean, Moser, John Fay, and others. A definitive body of information and research on the subject of theta functions, this volume will be a useful addition to individual and mathematics research libraries. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817645694 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4578-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281073 _d281073 |