000 03302nam a22003735i 4500
001 281073
003 MX-SnUAN
005 20160429154049.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780817645786
_99780817645786
024 7 _a10.1007/9780817645786
_2doi
035 _avtls000333562
039 9 _a201509030205
_bVLOAD
_c201404130449
_dVLOAD
_c201404092239
_dVLOAD
_y201402041114
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA351
100 1 _aMumford, David.
_eautor
_9306355
245 1 0 _aTata Lectures on Theta II /
_cby David Mumford.
264 1 _aBoston, MA :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2007.
300 _axiv, 272 páginas 21 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aModern Birkhäuser Classics
500 _aSpringer eBooks
505 0 _aAn Elementary Construction of Hyperelliptic Jacobians -- Review of background in algebraic geometry -- Divisors on hyperelliptic curves -- Algebraic construction of the Jacobian of a hyperelliptic curve -- The translation-invariant vector fields -- Neumann’s dynamical system -- Tying together the analytic Jacobian and algebraic Jacobian -- Theta characteristics and the fundamental Vanishing Property -- Frobenius’ theta formula -- Thomae’s formula and moduli of hyperelliptic curves -- Characterization of hyperelliptic period matrices -- The hyperelliptic p-function -- The Korteweg-deVries dynamical system -- Fay’s Trisecant Identity for Jacobian theta functions -- The Prime Form E(x,y). -- Fay’s Trisecant Identity -- Corollaries of the identity -- Applications to solutions of differential equations -- The Generalized Jacobian of a Singular Curve and its Theta Function -- Resolution of algebraic equations by theta constants -- Resolution of algebraic equations by theta constants.
520 _aThe second in a series of three volumes surveying the theory of theta functions, this volume gives emphasis to the special properties of the theta functions associated with compact Riemann surfaces and how they lead to solutions of the Korteweg-de-Vries equations as well as other non-linear differential equations of mathematical physics. This book presents an explicit elementary construction of hyperelliptic Jacobian varieties and is a self-contained introduction to the theory of the Jacobians. It also ties together nineteenth-century discoveries due to Jacobi, Neumann, and Frobenius with recent discoveries of Gelfand, McKean, Moser, John Fay, and others. A definitive body of information and research on the subject of theta functions, this volume will be a useful addition to individual and mathematics research libraries.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817645694
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4578-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281073
_d281073