000 | 04008nam a22003975i 4500 | ||
---|---|---|---|
001 | 281075 | ||
003 | MX-SnUAN | ||
005 | 20170705134204.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 xxu| o |||| 0|eng d | ||
020 |
_a9780817646622 _99780817646622 |
||
024 | 7 |
_a10.1007/9780817646622 _2doi |
|
035 | _avtls000333602 | ||
039 | 9 |
_a201509030206 _bVLOAD _c201404130457 _dVLOAD _c201404092247 _dVLOAD _y201402041115 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA401-425 | |
100 | 1 |
_aGitman, D.M. _eautor _9306456 |
|
245 | 1 | 0 |
_aSelf-adjoint Extensions in Quantum Mechanics : _bGeneral Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials / _cby D.M. Gitman, I.V. Tyutin, B.L. Voronov. |
264 | 1 |
_aBoston : _bBirkhäuser Boston, _c2012. |
|
300 |
_axiii, 511 páginas 3 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematical Physics ; _v62 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction -- Linear Operators in Hilbert Spaces -- Basics of Theory of s.a. Extensions of Symmetric Operators -- Differential Operators -- Spectral Analysis of s.a. Operators -- Free One-Dimensional Particle on an Interval -- One-Dimensional Particle in Potential Fields -- Schrödinger Operators with Exactly Solvable Potentials -- Dirac Operator with Coulomb Field -- Schrödinger and Dirac Operators with Aharonov-Bohm and Magnetic-Solenoid Fields. | |
520 | _aQuantization of physical systems requires a correct definition of quantum-mechanical observables, such as the Hamiltonian, momentum, etc., as self-adjoint operators in appropriate Hilbert spaces and their spectral analysis. Though a “naïve” treatment exists for dealing with such problems, it is based on finite-dimensional algebra or even infinite-dimensional algebra with bounded operators, resulting in paradoxes and inaccuracies. A proper treatment of these problems requires invoking certain nontrivial notions and theorems from functional analysis concerning the theory of unbounded self-adjoint operators and the theory of self-adjoint extensions of symmetric operators. Self-adjoint Extensions in Quantum Mechanics begins by considering quantization problems in general, emphasizing the nontriviality of consistent operator construction by presenting paradoxes of the naïve treatment. The necessary mathematical background is then built by developing the theory of self-adjoint extensions. Through examination of various quantum-mechanical systems, the authors show how quantization problems associated with the correct definition of observables and their spectral analysis can be treated consistently for comparatively simple quantum-mechanical systems. Systems that are examined include free particles on an interval, particles in a number of potential fields including delta-like potentials, the one-dimensional Calogero problem, the Aharonov–Bohm problem, and the relativistic Coulomb problem. This well-organized text is most suitable for graduate students and postgraduates interested in deepening their understanding of mathematical problems in quantum mechanics beyond the scope of those treated in standard textbooks. The book may also serve as a useful resource for mathematicians and researchers in mathematical and theoretical physics. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aTyutin, I.V. _eautor _9306457 |
|
700 | 1 |
_aVoronov, B.L. _eautor _9306458 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817644000 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4662-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281075 _d281075 |