000 04008nam a22003975i 4500
001 281075
003 MX-SnUAN
005 20170705134204.0
007 cr nn 008mamaa
008 150903s2012 xxu| o |||| 0|eng d
020 _a9780817646622
_99780817646622
024 7 _a10.1007/9780817646622
_2doi
035 _avtls000333602
039 9 _a201509030206
_bVLOAD
_c201404130457
_dVLOAD
_c201404092247
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA401-425
100 1 _aGitman, D.M.
_eautor
_9306456
245 1 0 _aSelf-adjoint Extensions in Quantum Mechanics :
_bGeneral Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials /
_cby D.M. Gitman, I.V. Tyutin, B.L. Voronov.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2012.
300 _axiii, 511 páginas 3 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematical Physics ;
_v62
500 _aSpringer eBooks
505 0 _aIntroduction -- Linear Operators in Hilbert Spaces -- Basics of Theory of s.a. Extensions of Symmetric Operators -- Differential Operators -- Spectral Analysis of s.a. Operators -- Free One-Dimensional Particle on an Interval -- One-Dimensional Particle in Potential Fields -- Schrödinger Operators with Exactly Solvable Potentials -- Dirac Operator with Coulomb Field -- Schrödinger and Dirac Operators with Aharonov-Bohm and Magnetic-Solenoid Fields.
520 _aQuantization of physical systems requires a correct definition of quantum-mechanical observables, such as the Hamiltonian, momentum, etc., as self-adjoint operators in appropriate Hilbert spaces and their spectral analysis.  Though a “naïve”  treatment exists for dealing with such problems, it is based on finite-dimensional algebra or even infinite-dimensional algebra with bounded operators, resulting in paradoxes and inaccuracies.   A proper treatment of these problems requires invoking certain nontrivial notions and theorems from functional analysis concerning the theory of unbounded self-adjoint operators and the theory of self-adjoint extensions of symmetric operators. Self-adjoint Extensions in Quantum Mechanics begins by considering quantization problems in general, emphasizing the nontriviality of consistent operator construction by presenting paradoxes of the naïve treatment.  The necessary mathematical background is then built by developing the theory of self-adjoint extensions.  Through examination of  various quantum-mechanical systems, the authors show how quantization problems associated with the correct definition of observables and their spectral analysis can be treated consistently for comparatively simple quantum-mechanical systems.  Systems that are examined include free particles on an interval, particles in a number of potential fields including delta-like potentials, the one-dimensional Calogero problem, the Aharonov–Bohm problem, and the relativistic Coulomb problem. This well-organized text is most suitable for graduate students and postgraduates interested in deepening their understanding of mathematical problems in quantum mechanics beyond the scope of those treated in standard textbooks.  The book may also serve as a useful resource for mathematicians and researchers in mathematical and theoretical physics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aTyutin, I.V.
_eautor
_9306457
700 1 _aVoronov, B.L.
_eautor
_9306458
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817644000
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4662-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281075
_d281075