000 | 03171nam a22003735i 4500 | ||
---|---|---|---|
001 | 281079 | ||
003 | MX-SnUAN | ||
005 | 20160429154049.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxk| o |||| 0|eng d | ||
020 |
_a9780857290434 _99780857290434 |
||
024 | 7 |
_a10.1007/9780857290434 _2doi |
|
035 | _avtls000333785 | ||
039 | 9 |
_a201509030218 _bVLOAD _c201404130532 _dVLOAD _c201404092321 _dVLOAD _y201402041132 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aTJ212-225 | |
100 | 1 |
_aBarbu, Viorel. _eautor _9306464 |
|
245 | 1 | 0 |
_aStabilization of Navier–Stokes Flows / _cby Viorel Barbu. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2011. |
|
300 |
_axii, 276 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aCommunications and Control Engineering, _x0178-5354 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreliminaries -- Stabilization of Abstract Parabolic Systems -- Stabilization of Navier–Stokes Flows -- Stabilization by Noise of Navier–Stokes Equations -- Robust Stabilization of the Navier–Stokes Equation via the H-infinity Control Theory. | |
520 | _aStabilization of Navier–Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier–Stokes equations, reducing or eliminating turbulence. Stochastic stabilization and robustness of stabilizable feedback are also discussed. The text treats the questions: • What is the structure of the stabilizing feedback controller? • How can it be designed using a minimal set of eigenfunctions of the Stokes–Oseen operator? The analysis developed here provides a rigorous pattern for the design of efficient stabilizable feedback controllers to meet the needs of practical problems and the conceptual controllers actually detailed will render the reader’s task of application easier still. Stabilization of Navier–Stokes Flows avoids the tedious and technical details often present in mathematical treatments of control and Navier–Stokes equations and will appeal to a sizeable audience of researchers and graduate students interested in the mathematics of flow and turbulence control and in Navier-Stokes equations in particular. The chief points of linear functional analysis, linear algebra, probability theory and general variational theory of elliptic, parabolic and Navier–Stokes equations are reviewed in an introductory chapter and at the end of chapters 3 and 4. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780857290427 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-043-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281079 _d281079 |