000 03171nam a22003735i 4500
001 281079
003 MX-SnUAN
005 20160429154049.0
007 cr nn 008mamaa
008 150903s2011 xxk| o |||| 0|eng d
020 _a9780857290434
_99780857290434
024 7 _a10.1007/9780857290434
_2doi
035 _avtls000333785
039 9 _a201509030218
_bVLOAD
_c201404130532
_dVLOAD
_c201404092321
_dVLOAD
_y201402041132
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTJ212-225
100 1 _aBarbu, Viorel.
_eautor
_9306464
245 1 0 _aStabilization of Navier–Stokes Flows /
_cby Viorel Barbu.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2011.
300 _axii, 276 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aCommunications and Control Engineering,
_x0178-5354
500 _aSpringer eBooks
505 0 _aPreliminaries -- Stabilization of Abstract Parabolic Systems -- Stabilization of Navier–Stokes Flows -- Stabilization by Noise of Navier–Stokes Equations -- Robust Stabilization of the Navier–Stokes Equation via the H-infinity Control Theory.
520 _aStabilization of Navier–Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier–Stokes equations, reducing or eliminating turbulence. Stochastic stabilization and robustness of stabilizable feedback are also discussed. The text treats the questions: • What is the structure of the stabilizing feedback controller? • How can it be designed using a minimal set of eigenfunctions of the Stokes–Oseen operator? The analysis developed here provides a rigorous pattern for the design of efficient stabilizable feedback controllers to meet the needs of practical problems and the conceptual controllers actually detailed will render the reader’s task of application easier still. Stabilization of Navier–Stokes Flows avoids the tedious and technical details often present in mathematical treatments of control and Navier–Stokes equations and will appeal to a sizeable audience of researchers and graduate students interested in the mathematics of flow and turbulence control and in Navier-Stokes equations in particular. The chief points of linear functional analysis, linear algebra, probability theory and general variational theory of elliptic, parabolic and Navier–Stokes equations are reviewed in an introductory chapter and at the end of chapters 3 and 4.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780857290427
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-043-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281079
_d281079