000 03127nam a22003615i 4500
001 281087
003 MX-SnUAN
005 20160429154049.0
007 cr nn 008mamaa
008 150903s2011 xxk| o |||| 0|eng d
020 _a9780857292872
_99780857292872
024 7 _a10.1007/9780857292872
_2doi
035 _avtls000333865
039 9 _a201509030242
_bVLOAD
_c201404130548
_dVLOAD
_c201404092337
_dVLOAD
_y201402041134
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.9.M35 
100 1 _aMirkin, Boris.
_eautor
_9306480
245 1 0 _aCore Concepts in Data Analysis: Summarization, Correlation and Visualization /
_cby Boris Mirkin.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2011.
300 _axx, 390 páginas 129 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUndergraduate Topics in Computer Science,
_x1863-7310
500 _aSpringer eBooks
520 _aCore Concepts in Data Analysis: Summarization, Correlation and Visualization provides in-depth descriptions of those data analysis approaches that either summarize data (principal component analysis and clustering, including hierarchical and network clustering) or correlate different aspects of data (decision trees, linear rules, neuron networks, and Bayes rule). Boris Mirkin takes an unconventional approach and introduces the concept of multivariate data summarization as a counterpart to conventional machine learning prediction schemes, utilizing techniques from statistics, data analysis, data mining, machine learning, computational intelligence, and information retrieval. Innovations following from his in-depth analysis of the models underlying summarization techniques are introduced, and applied to challenging issues such as the number of clusters, mixed scale data standardization, interpretation of the solutions, as well as relations between seemingly unrelated concepts: goodness-of-fit functions for classification trees and data standardization, spectral clustering and additive clustering, correlation and visualization of contingency data.   The mathematical detail is encapsulated in the so-called “formulation” parts, whereas most material is delivered through “presentation” parts that explain the methods by applying them to small real-world data sets; concise “computation” parts inform of the algorithmic and coding issues. Four layers of active learning and self-study exercises are provided: worked examples, case studies, projects and questions.         
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780857292865
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-287-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281087
_d281087