000 03771nam a22003855i 4500
001 281116
003 MX-SnUAN
005 20170705134204.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780817644260
_99780817644260
024 7 _a10.1007/b138865
_2doi
035 _avtls000333479
039 9 _a201509031102
_bVLOAD
_c201405070515
_dVLOAD
_y201402041112
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA252.3
100 1 _aAnker, Jean-Philippe.
_eeditor.
_9306539
245 1 0 _aLie Theory :
_bHarmonic Analysis on Symmetric Spaces—General Plancherel Theorems /
_cedited by Jean-Philippe Anker, Bent Orsted.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2005.
300 _aviii, 175 páginas 3 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v230
500 _aSpringer eBooks
505 0 _aThe Plancherel Theorem for a Reductive Symmetric Space -- The Paley—Wiener Theorem for a Reductive Symmetric Space -- The Plancherel Formula on Reductive Symmetric Spaces from the Point of View of the Schwartz Space.
520 _aSemisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory. Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems presents extensive surveys by E.P. van den Ban, H. Schlichtkrull, and P. Delorme of the spectacular progress over the past decade in deriving the Plancherel theorem on reductive symmetric spaces. Van den Ban’s introductory chapter explains the basic setup of a reductive symmetric space along with a careful study of the structure theory, particularly for the ring of invariant differential operators for the relevant class of parabolic subgroups. Advanced topics for the formulation and understanding of the proof are covered, including Eisenstein integrals, regularity theorems, Maass–Selberg relations, and residue calculus for root systems. Schlichtkrull provides a cogent account of the basic ingredients in the harmonic analysis on a symmetric space through the explanation and definition of the Paley–Wiener theorem. Approaching the Plancherel theorem through an alternative viewpoint, the Schwartz space, Delorme bases his discussion and proof on asymptotic expansions of eigenfunctions and the theory of intertwining integrals. Well suited for both graduate students and researchers in semisimple Lie theory and neighboring fields, possibly even mathematical cosmology, Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems provides a broad, clearly focused examination of semisimple Lie groups and their integral importance and applications to research in many branches of mathematics and physics. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups, symmetric spaces, and parabolic subgroups is required.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aOrsted, Bent.
_eeditor.
_9306540
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817637774
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b138865
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281116
_d281116