000 02983nam a22003855i 4500
001 281140
003 MX-SnUAN
005 20160429154052.0
007 cr nn 008mamaa
008 150903s2011 xxk| o |||| 0|eng d
020 _a9780857295255
_99780857295255
024 7 _a10.1007/9780857295255
_2doi
035 _avtls000333914
039 9 _a201509030242
_bVLOAD
_c201404130558
_dVLOAD
_c201404092347
_dVLOAD
_y201402041135
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.9.D343
100 1 _aVeloso, Adriano.
_eautor
_9306573
245 1 0 _aDemand-Driven Associative Classification /
_cby Adriano Veloso, Wagner Meira Jr.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _axiii, 112 páginas 27 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Computer Science,
_x2191-5768
500 _aSpringer eBooks
505 0 _aIntroduction and Preliminaries -- Introduction -- The Classification Problem -- Associative Classification -- Demand-Driven Associative Classification -- Extensions to Associative Classification -- Multi-Label Associative Classification -- Competence-Conscious Associative Classification -- Calibrated Associative Classification -- Self-Training Associative Classification -- Ordinal Regression and Ranking --  Conclusions and FutureWork.
520 _aThe ultimate goal of machines is to help humans to solve problems. Such problems range between two extremes: structured problems for which the solution is totally defined (and thus are easily programmed by humans), and random problems for which the solution is completely undefined (and thus cannot be programmed). Problems in the vast middle ground have solutions that cannot be well defined and are, thus, inherently hard to program. Machine Learning is the way to handle this vast middle ground, so that many tedious and difficult hand-coding tasks would be replaced by automatic learning methods. There are several machine learning tasks, and this work is focused on a major one, which is known as classification. Some classification problems are hard to solve, but we show that they can be decomposed into much simpler sub-problems. We also show that independently solving these sub-problems by taking into account their particular demands, often leads to improved classification performance.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aMeira Jr., Wagner.
_eautor
_9306574
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780857295248
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-525-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281140
_d281140