000 03542nam a22003855i 4500
001 281163
003 MX-SnUAN
005 20160429154053.0
007 cr nn 008mamaa
008 150903s2010 xxu| o |||| 0|eng d
020 _a9780387980980
_99780387980980
024 7 _a10.1007/9780387980980
_2doi
035 _avtls000333430
039 9 _a201509030231
_bVLOAD
_c201404130436
_dVLOAD
_c201404092226
_dVLOAD
_y201402041111
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA299.6-433
100 1 _aDavidson, Kenneth R.
_eautor
_9306616
245 1 0 _aReal Analysis and Applications :
_bTheory in Practice /
_cby Kenneth R. Davidson, Allan P. Donsig.
264 1 _aNew York, NY :
_bSpringer New York,
_c2010.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUndergraduate Texts in Mathematics,
_x0172-6056
500 _aSpringer eBooks
505 0 _aAnalysis -- Review -- The Real Numbers -- Series -- Topology of -- Functions -- Differentiation and Integration -- Norms and Inner Products -- Limits of Functions -- Metric Spaces -- Applications -- Approximation by Polynomials -- Discrete Dynamical Systems -- Differential Equations -- Fourier Series and Physics -- Fourier Series and Approximation -- Wavelets -- Convexity and Optimization.
520 _aThis new approach to real analysis stresses the use of the subject in applications, showing how the principles and theory of real analysis can be applied in various settings. Applications cover approximation by polynomials, discrete dynamical systems, differential equations, Fourier series and physics, Fourier series and approximation, wavelets, and convexity and optimization. Each chapter has many useful exercises. The treatment of the basic theory covers the real numbers, functions, and calculus, while emphasizing the role of normed vector spaces, and particularly of Rn. The applied chapters are mostly independent, giving the reader a choice of topics. This book is appropriate for students with a prior knowledge of both calculus and linear algebra who want a careful development of both analysis and its use in applications. Review of the previous version of this book, Real Analysis with Real Applications: "A well balanced book! The first solid analysis course, with proofs, is central in the offerings of any math.-dept.; ---and yet, the new books that hit the market don't always hit the mark: the balance between theory and applications, ---between technical proofs and intuitive ideas, ---between classical and modern subjects, and between real life exercises vs. the ones that drill a new concept. The Davidson-Donsig book is outstanding, and it does hit the mark." Palle E. T. Jorgenson, Review from Amazon.com Kenneth R. Davidson is University Professor of Mathematics at the University of Waterloo. Allan P. Donsig is Associate Professor of Mathematics at the University of Nebraska-Lincoln.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aDonsig, Allan P.
_eautor
_9306617
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387980973
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-98098-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281163
_d281163