000 03635nam a22003855i 4500
001 281165
003 MX-SnUAN
005 20170705134204.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780817644307
_99780817644307
024 7 _a10.1007/b139076
_2doi
035 _avtls000333483
039 9 _a201509031103
_bVLOAD
_c201405070516
_dVLOAD
_y201402041112
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA252.3
100 1 _aAnker, Jean-Philippe.
_eeditor.
_9306539
245 1 0 _aLie Theory :
_bUnitary Representations and Compactifications of Symmetric Spaces /
_cedited by Jean-Philippe Anker, Bent Orsted.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2005.
300 _ax, 207 páginas 20 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v229
500 _aSpringer eBooks
505 0 _ato Symmetric Spaces and Their Compactifications -- Compactifications of Symmetric and Locally Symmetric Spaces -- Restrictions of Unitary Representations of Real Reductive Groups.
520 _aSemisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory. Unitary Representations and Compactifications of Symmetric Spaces, a self-contained work by A. Borel, L. Ji, and T. Kobayashi, focuses on two fundamental questions in the theory of semisimple Lie groups: the geometry of Riemannian symmetric spaces and their compactifications; and branching laws for unitary representations, i.e., restricting unitary representations to (typically, but not exclusively, symmetric) subgroups and decomposing the ensuing representations into irreducibles. Ji's introductory chapter motivates the subject of symmetric spaces and their compactifications with carefully selected examples. A discussion of Satake and Furstenberg boundaries and a survey of the geometry of Riemannian symmetric spaces in general provide a good background for the second chapter, namely, the Borel–Ji authoritative treatment of various types of compactifications useful for studying symmetric and locally symmetric spaces. Borel–Ji further examine constructions of Oshima, De Concini, Procesi, and Melrose, which demonstrate the wide applicability of compactification techniques. Kobayashi examines the important subject of branching laws. Important concepts from modern representation theory, such as Harish–Chandra modules, associated varieties, microlocal analysis, derived functor modules, and geometric quantization are introduced. Concrete examples and relevant exercises engage the reader. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups and symmetric spaces is required of the reader.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aOrsted, Bent.
_eeditor.
_9306540
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817635268
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b139076
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281165
_d281165