000 | 03635nam a22003855i 4500 | ||
---|---|---|---|
001 | 281165 | ||
003 | MX-SnUAN | ||
005 | 20170705134204.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 xxu| o |||| 0|eng d | ||
020 |
_a9780817644307 _99780817644307 |
||
024 | 7 |
_a10.1007/b139076 _2doi |
|
035 | _avtls000333483 | ||
039 | 9 |
_a201509031103 _bVLOAD _c201405070516 _dVLOAD _y201402041112 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA252.3 | |
100 | 1 |
_aAnker, Jean-Philippe. _eeditor. _9306539 |
|
245 | 1 | 0 |
_aLie Theory : _bUnitary Representations and Compactifications of Symmetric Spaces / _cedited by Jean-Philippe Anker, Bent Orsted. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2005. |
|
300 |
_ax, 207 páginas 20 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v229 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _ato Symmetric Spaces and Their Compactifications -- Compactifications of Symmetric and Locally Symmetric Spaces -- Restrictions of Unitary Representations of Real Reductive Groups. | |
520 | _aSemisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory. Unitary Representations and Compactifications of Symmetric Spaces, a self-contained work by A. Borel, L. Ji, and T. Kobayashi, focuses on two fundamental questions in the theory of semisimple Lie groups: the geometry of Riemannian symmetric spaces and their compactifications; and branching laws for unitary representations, i.e., restricting unitary representations to (typically, but not exclusively, symmetric) subgroups and decomposing the ensuing representations into irreducibles. Ji's introductory chapter motivates the subject of symmetric spaces and their compactifications with carefully selected examples. A discussion of Satake and Furstenberg boundaries and a survey of the geometry of Riemannian symmetric spaces in general provide a good background for the second chapter, namely, the Borel–Ji authoritative treatment of various types of compactifications useful for studying symmetric and locally symmetric spaces. Borel–Ji further examine constructions of Oshima, De Concini, Procesi, and Melrose, which demonstrate the wide applicability of compactification techniques. Kobayashi examines the important subject of branching laws. Important concepts from modern representation theory, such as Harish–Chandra modules, associated varieties, microlocal analysis, derived functor modules, and geometric quantization are introduced. Concrete examples and relevant exercises engage the reader. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups and symmetric spaces is required of the reader. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aOrsted, Bent. _eeditor. _9306540 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817635268 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b139076 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281165 _d281165 |