000 | 03497nam a22003855i 4500 | ||
---|---|---|---|
001 | 281167 | ||
003 | MX-SnUAN | ||
005 | 20170705134204.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 xxu| o |||| 0|eng d | ||
020 |
_a9780817644932 _99780817644932 |
||
024 | 7 |
_a10.1007/9780817644932 _2doi |
|
035 | _avtls000333523 | ||
039 | 9 |
_a201509030232 _bVLOAD _c201404130442 _dVLOAD _c201404092232 _dVLOAD _y201402041113 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA252.3 | |
100 | 1 |
_aHuang, Jing-Song. _eautor _9306622 |
|
245 | 1 | 0 |
_aDirac Operators in Representation Theory / _cby Jing-Song Huang, Pavle Pandži?. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2006. |
|
300 |
_ax, 199 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aMathematics: Theory & Applications | |
500 | _aSpringer eBooks | ||
505 | 0 | _aLie Groups, Lie Algebras and Representations -- Clifford Algebras and Spinors -- Dirac Operators in the Algebraic Setting -- A Generalized Bott-Borel-Weil Theorem -- Cohomological Induction -- Properties of Cohomologically Induced Modules -- Discrete Series -- Dimensions of Spaces of Automorphic Forms -- Dirac Operators and Nilpotent Lie Algebra Cohomology -- Dirac Cohomology for Lie Superalgebras. | |
520 | _aThis monograph presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Dirac operators are widely used in physics, differential geometry, and group-theoretic settings (particularly, the geometric construction of discrete series representations). The related concept of Dirac cohomology, which is defined using Dirac operators, is a far-reaching generalization that connects index theory in differential geometry to representation theory. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. Key topics covered include: * Proof of Vogan's conjecture on Dirac cohomology * Simple proofs of many classical theorems, such as the Bott–Borel–Weil theorem and the Atiyah–Schmid theorem * Dirac cohomology, defined by Kostant's cubic Dirac operator, along with other closely related kinds of cohomology, such as n-cohomology and (g,K)-cohomology * Cohomological parabolic induction and $A_q(\lambda)$ modules * Discrete series theory, characters, existence and exhaustion * Sharpening of the Langlands formula on multiplicity of automorphic forms, with applications * Dirac cohomology for Lie superalgebras An excellent contribution to the mathematical literature of representation theory, this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aPandži?, Pavle. _eautor _9306623 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817632182 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4493-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281167 _d281167 |