000 03497nam a22003855i 4500
001 281167
003 MX-SnUAN
005 20170705134204.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780817644932
_99780817644932
024 7 _a10.1007/9780817644932
_2doi
035 _avtls000333523
039 9 _a201509030232
_bVLOAD
_c201404130442
_dVLOAD
_c201404092232
_dVLOAD
_y201402041113
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA252.3
100 1 _aHuang, Jing-Song.
_eautor
_9306622
245 1 0 _aDirac Operators in Representation Theory /
_cby Jing-Song Huang, Pavle Pandži?.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2006.
300 _ax, 199 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aMathematics: Theory & Applications
500 _aSpringer eBooks
505 0 _aLie Groups, Lie Algebras and Representations -- Clifford Algebras and Spinors -- Dirac Operators in the Algebraic Setting -- A Generalized Bott-Borel-Weil Theorem -- Cohomological Induction -- Properties of Cohomologically Induced Modules -- Discrete Series -- Dimensions of Spaces of Automorphic Forms -- Dirac Operators and Nilpotent Lie Algebra Cohomology -- Dirac Cohomology for Lie Superalgebras.
520 _aThis monograph presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Dirac operators are widely used in physics, differential geometry, and group-theoretic settings (particularly, the geometric construction of discrete series representations). The related concept of Dirac cohomology, which is defined using Dirac operators, is a far-reaching generalization that connects index theory in differential geometry to representation theory. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. Key topics covered include: * Proof of Vogan's conjecture on Dirac cohomology * Simple proofs of many classical theorems, such as the Bott–Borel–Weil theorem and the Atiyah–Schmid theorem * Dirac cohomology, defined by Kostant's cubic Dirac operator, along with other closely related kinds of cohomology, such as n-cohomology and (g,K)-cohomology * Cohomological parabolic induction and $A_q(\lambda)$ modules * Discrete series theory, characters, existence and exhaustion * Sharpening of the Langlands formula on multiplicity of automorphic forms, with applications * Dirac cohomology for Lie superalgebras An excellent contribution to the mathematical literature of representation theory, this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aPandži?, Pavle.
_eautor
_9306623
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817632182
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4493-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281167
_d281167