000 | 03540nam a22004215i 4500 | ||
---|---|---|---|
001 | 281168 | ||
003 | MX-SnUAN | ||
005 | 20160429154053.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 xxu| o |||| 0|eng d | ||
020 |
_a9780817644956 _99780817644956 |
||
024 | 7 |
_a10.1007/9780817644956 _2doi |
|
035 | _avtls000333524 | ||
039 | 9 |
_a201509030802 _bVLOAD _c201404130443 _dVLOAD _c201404092232 _dVLOAD _y201402041113 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA564-609 | |
100 | 1 |
_aKock, Joachim. _eautor _9306624 |
|
245 | 1 | 3 |
_aAn Invitation to Quantum Cohomology : _bKontsevich’s Formula for Rational Plane Curves / _cby Joachim Kock, Israel Vainsencher ; edited by Hyman Bass, Joseph Oesterlé, Alan Weinstein. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2007. |
|
300 |
_axii, 159 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v249 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPrologue: Warming Up with Cross Ratios, and the Definition of Moduli Space -- Stable n-pointed Curves -- Stable Maps -- Enumerative Geometry via Stable Maps -- Gromov—Witten Invariants -- Quantum Cohomology. | |
520 | _aThis book is an elementary introduction to stable maps and quantum cohomology, starting with an introduction to stable pointed curves, and culminating with a proof of the associativity of the quantum product. The viewpoint is mostly that of enumerative geometry, and the red thread of the exposition is the problem of counting rational plane curves. Kontsevich's formula is initially established in the framework of classical enumerative geometry, then as a statement about reconstruction for Gromov–Witten invariants, and finally, using generating functions, as a special case of the associativity of the quantum product. Emphasis is given throughout the exposition to examples, heuristic discussions, and simple applications of the basic tools to best convey the intuition behind the subject. The book demystifies these new quantum techniques by showing how they fit into classical algebraic geometry. Some familiarity with basic algebraic geometry and elementary intersection theory is assumed. Each chapter concludes with some historical comments and an outline of key topics and themes as a guide for further study, followed by a collection of exercises that complement the material covered and reinforce computational skills. As such, the book is ideal for self-study, as a text for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory. The book will prove equally useful to graduate students in the classroom setting as to researchers in geometry and physics who wish to learn about the subject. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aVainsencher, Israel. _eautor _9306625 |
|
700 | 1 |
_aBass, Hyman. _eeditor. _9306626 |
|
700 | 1 |
_aOesterlé, Joseph. _eeditor. _9306627 |
|
700 | 1 |
_aWeinstein, Alan. _eeditor. _9306628 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817644567 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4495-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281168 _d281168 |