000 03540nam a22004215i 4500
001 281168
003 MX-SnUAN
005 20160429154053.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780817644956
_99780817644956
024 7 _a10.1007/9780817644956
_2doi
035 _avtls000333524
039 9 _a201509030802
_bVLOAD
_c201404130443
_dVLOAD
_c201404092232
_dVLOAD
_y201402041113
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA564-609
100 1 _aKock, Joachim.
_eautor
_9306624
245 1 3 _aAn Invitation to Quantum Cohomology :
_bKontsevich’s Formula for Rational Plane Curves /
_cby Joachim Kock, Israel Vainsencher ; edited by Hyman Bass, Joseph Oesterlé, Alan Weinstein.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2007.
300 _axii, 159 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v249
500 _aSpringer eBooks
505 0 _aPrologue: Warming Up with Cross Ratios, and the Definition of Moduli Space -- Stable n-pointed Curves -- Stable Maps -- Enumerative Geometry via Stable Maps -- Gromov—Witten Invariants -- Quantum Cohomology.
520 _aThis book is an elementary introduction to stable maps and quantum cohomology, starting with an introduction to stable pointed curves, and culminating with a proof of the associativity of the quantum product. The viewpoint is mostly that of enumerative geometry, and the red thread of the exposition is the problem of counting rational plane curves. Kontsevich's formula is initially established in the framework of classical enumerative geometry, then as a statement about reconstruction for Gromov–Witten invariants, and finally, using generating functions, as a special case of the associativity of the quantum product. Emphasis is given throughout the exposition to examples, heuristic discussions, and simple applications of the basic tools to best convey the intuition behind the subject. The book demystifies these new quantum techniques by showing how they fit into classical algebraic geometry. Some familiarity with basic algebraic geometry and elementary intersection theory is assumed. Each chapter concludes with some historical comments and an outline of key topics and themes as a guide for further study, followed by a collection of exercises that complement the material covered and reinforce computational skills. As such, the book is ideal for self-study, as a text for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory. The book will prove equally useful to graduate students in the classroom setting as to researchers in geometry and physics who wish to learn about the subject.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aVainsencher, Israel.
_eautor
_9306625
700 1 _aBass, Hyman.
_eeditor.
_9306626
700 1 _aOesterlé, Joseph.
_eeditor.
_9306627
700 1 _aWeinstein, Alan.
_eeditor.
_9306628
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817644567
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4495-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281168
_d281168