000 03329nam a22003735i 4500
001 281176
003 MX-SnUAN
005 20160429154053.0
007 cr nn 008mamaa
008 150903s2011 xxk| o |||| 0|eng d
020 _a9780857290731
_99780857290731
024 7 _a10.1007/9780857290731
_2doi
035 _avtls000333795
039 9 _a201509030804
_bVLOAD
_c201404130534
_dVLOAD
_c201404092323
_dVLOAD
_y201402041132
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA313
100 1 _aDal’Bo, Françoise.
_eautor
_9306635
245 1 0 _aGeodesic and Horocyclic Trajectories /
_cby Françoise Dal’Bo.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _axii, 176 páginas 110 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext
500 _aSpringer eBooks
505 0 _aDynamics of Fuchsian groups -- Examples of Fuchsian Groups -- Topological dynamics of the geodesic flow -- Schottky groups -- Topological dynamics -- The Lorentzian point of view -- Trajectories and Diophantine approximations.
520 _aDuring the past thirty years, strong relationships have interwoven the fields of dynamical systems, linear algebra and number theory. This rapport between different areas of mathematics has enabled the resolution of some important conjectures and has in fact given birth to new ones. This book sheds light on these relationships and their applications in an elementary setting, by showing that the study of curves on a surface can lead to orbits of a linear group or even to continued fraction expansions of real numbers. Geodesic and Horocyclic Trajectories presents an introduction to the topological dynamics of two classical flows associated with surfaces of curvature ?1, namely the geodesic and horocycle flows. Written primarily with the idea of highlighting, in a relatively elementary framework, the existence of gateways between some mathematical fields, and the advantages of using them, historical aspects of this field are not addressed and most of the references are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations. This book will appeal to those with a basic knowledge of differential geometry including graduate students and experts with a general interest in the area Françoise Dal’Bo is a professor of mathematics at the University of Rennes. Her research studies topological and metric dynamical systems in negative curvature and their applications especially to the areas of number theory and linear actions.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780857290724
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-073-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281176
_d281176