000 | 03329nam a22003735i 4500 | ||
---|---|---|---|
001 | 281176 | ||
003 | MX-SnUAN | ||
005 | 20160429154053.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxk| o |||| 0|eng d | ||
020 |
_a9780857290731 _99780857290731 |
||
024 | 7 |
_a10.1007/9780857290731 _2doi |
|
035 | _avtls000333795 | ||
039 | 9 |
_a201509030804 _bVLOAD _c201404130534 _dVLOAD _c201404092323 _dVLOAD _y201402041132 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA313 | |
100 | 1 |
_aDal’Bo, Françoise. _eautor _9306635 |
|
245 | 1 | 0 |
_aGeodesic and Horocyclic Trajectories / _cby Françoise Dal’Bo. |
264 | 1 |
_aLondon : _bSpringer London, _c2011. |
|
300 |
_axii, 176 páginas 110 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aUniversitext | |
500 | _aSpringer eBooks | ||
505 | 0 | _aDynamics of Fuchsian groups -- Examples of Fuchsian Groups -- Topological dynamics of the geodesic flow -- Schottky groups -- Topological dynamics -- The Lorentzian point of view -- Trajectories and Diophantine approximations. | |
520 | _aDuring the past thirty years, strong relationships have interwoven the fields of dynamical systems, linear algebra and number theory. This rapport between different areas of mathematics has enabled the resolution of some important conjectures and has in fact given birth to new ones. This book sheds light on these relationships and their applications in an elementary setting, by showing that the study of curves on a surface can lead to orbits of a linear group or even to continued fraction expansions of real numbers. Geodesic and Horocyclic Trajectories presents an introduction to the topological dynamics of two classical flows associated with surfaces of curvature ?1, namely the geodesic and horocycle flows. Written primarily with the idea of highlighting, in a relatively elementary framework, the existence of gateways between some mathematical fields, and the advantages of using them, historical aspects of this field are not addressed and most of the references are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations. This book will appeal to those with a basic knowledge of differential geometry including graduate students and experts with a general interest in the area Françoise Dal’Bo is a professor of mathematics at the University of Rennes. Her research studies topological and metric dynamical systems in negative curvature and their applications especially to the areas of number theory and linear actions. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780857290724 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-073-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281176 _d281176 |