000 02502nam a22003735i 4500
001 281197
003 MX-SnUAN
005 20160429154054.0
007 cr nn 008mamaa
008 150903s2005 ne | o |||| 0|eng d
020 _a9781402021336
_99781402021336
024 7 _a10.1007/140202133-X
_2doi
035 _avtls000334063
039 9 _a201509030232
_bVLOAD
_c201404120641
_dVLOAD
_c201404090421
_dVLOAD
_y201402041139
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA299.6-433
100 1 _aXu, Yichao.
_eautor
_9306679
245 1 0 _aTheory of Complex Homogeneous Bounded Domains /
_cby Yichao Xu.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2005.
300 _ax, 427 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aMathematics and Its Applications ;
_v569
500 _aSpringer eBooks
505 0 _a1. Siegel Domains and sub chapters -- 2. Homogeneous Siegel Domains and sub chapters -- 3. Normal Siegel Domains and sub chapters -- 4. Other Realizations and sub chapters -- 5. Automorphism Group and sub chapters -- 6. Classification of Square Domains and sub chapters -- 7. Symmetric Bounded Domains and sub chapters -- 8. Szegö Kernel and Poisson Kernel and sub chapters -- 9. Homogeneous Bounded Domains and sub chapters -- References. Index.
520 _aTheory of Complex Homogeneous Bounded Domains studies the classification and function theory of complex homogeneous bounded domains systematically for the first time. In the book, the Siegel domains are discussed in detail. Proofs are given for 1: every homogeneous bounded domain is holomorphically isomorphic to a homogeneous Siegel domain, and 2: every homogeneous Siegel domain is affine isomorphic to a normal Siegel domain. Using the normal Siegel domains to realize the homogeneous bounded domains, we can obtain more property of the geometry and the function theory on homogeneous bounded domains.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781402021329
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-4020-2133-X
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281197
_d281197