000 03159nam a22004095i 4500
001 281216
003 MX-SnUAN
005 20170705134205.0
007 cr nn 008mamaa
008 150903s2005 ne | o |||| 0|eng d
020 _a9781402032752
_99781402032752
024 7 _a10.1007/1402032757
_2doi
035 _avtls000334291
039 9 _a201509030245
_bVLOAD
_c201404120722
_dVLOAD
_c201404090501
_dVLOAD
_y201402041144
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aT385
100 1 _aSebe, N.
_eautor
_9306715
245 1 0 _aMachine Learning in Computer Vision /
_cby N. Sebe, Ira Cohen, Ashutosh Garg, Thomas S. Huang.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2005.
300 _axv, 242 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aComputational Imaging and Vision,
_x1381-6446 ;
_v29
500 _aSpringer eBooks
505 0 _aTheory: Probabilistic Classifiers -- Theory: Generalization Bounds -- Theory: Semi-Supervised Learning -- Algorithm: Maximum Likelihood Minimum Entropy HMM -- Algorithm: Margin Distribution Optimization -- Algorithm: Learning the Structure of Bayesian Network Classifiers -- Application: Office Activity Recognition -- Application: Multimodal Event Detection -- Application: Facial Expression Recognition -- Application: Bayesian Network Classifiers for Face Detection.
520 _aThe goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aCohen, Ira.
_eautor
_9306716
700 1 _aGarg, Ashutosh.
_eautor
_9306717
700 1 _aHuang, Thomas S.
_eautor
_9301775
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781402032745
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-4020-3275-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281216
_d281216