000 03107nam a22003855i 4500
001 281220
003 MX-SnUAN
005 20160429154055.0
007 cr nn 008mamaa
008 150903s2005 ne | o |||| 0|eng d
020 _a9781402034169
_99781402034169
024 7 _a10.1007/1402034164
_2doi
035 _avtls000334344
039 9 _a201509030245
_bVLOAD
_c201404120731
_dVLOAD
_c201404090511
_dVLOAD
_y201402041146
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aVassiliou, Efstathios.
_eautor
_9306723
245 1 0 _aGeometry of Principal Sheaves /
_cby Efstathios Vassiliou ; edited by M. Hazewinkel.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2005.
300 _axvI, 444 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aMathematics and Its Applications ;
_v578
500 _aSpringer eBooks
505 0 _aSheaves and all that -- The category of differential triads -- Lie sheaves of groups -- Principal sheaves -- Vector and associated sheaves -- Connections on principal sheaves -- Connections on vector and associated sheaves -- Curvature -- Chern-Weil theory -- Applications and further examples.
520 _aThe book provides a detailed introduction to the theory of connections on principal sheaves in the framework of Abstract Differential Geometry (ADG). This is a new approach to differential geometry based on sheaf theoretic methods, without use of ordinary calculus. This point of view complies with the demand of contemporary physics to cope with non-smooth models of physical phenomena and spaces with singularities. Starting with a brief survey of the required sheaf theory and cohomology, the exposition then moves on to differential triads (the abstraction of smooth manifolds) and Lie sheaves of groups (the abstraction of Lie groups). Having laid the groundwork, the main part of the book is devoted to the theory of connections on principal sheaves, incorporating connections on vector and associated sheaves. Topics such as the moduli sheaf of connections, classification of principal sheaves, curvature, flat connections and flat sheaves, Chern-Weil theory, are also treated. The study brings to light fundamental notions and tools of the standard differential geometry which are susceptible of the present abstraction, and whose role remains unexploited in the classical context, because of the abundance of means therein. However, most of the latter are nonsensical in ADG.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHazewinkel, M.
_eeditor.
_9306724
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781402034152
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-4020-3416-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281220
_d281220