000 04025nam a22003615i 4500
001 281252
003 MX-SnUAN
005 20160429154056.0
007 cr nn 008mamaa
008 150903s2012 xxu| o |||| 0|eng d
020 _a9780817683252
_99780817683252
024 7 _a10.1007/9780817683252
_2doi
035 _avtls000333740
039 9 _a201509030803
_bVLOAD
_c201404130524
_dVLOAD
_c201404092314
_dVLOAD
_y201402041118
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA184-205
100 1 _aSchay, Géza.
_eautor
_9306631
245 1 2 _aA Concise Introduction to Linear Algebra /
_cby Géza Schay.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2012.
300 _axii, 330 páginas 50 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPreface -- 1 Analytic Geometry of Euclidean Spaces -- 2 Systems of Linear Equations, Matrices -- 3 Vector Spaces and Subspaces -- 4 Linear Transformations -- 5 Orthogonal Projections and Bases -- 6 Determinants -- 7 Eigenvalues and Eigenvectors -- 8 Numerical Methods -- 9 Appendices.
520 _aThis book offers a refreshingly concise, manageable introduction to linear algebra: Whereas most treatments of the subject give an exhaustive survey supplemented with applications, this book presents a carefully selected array of the most essential topics that can be thoroughly covered in a single semester. The exposition generally falls in line with the material recommended by the Linear Algebra Curriculum Study Group, but notably deviates in providing an early emphasis on the geometric foundations of linear algebra.  Starting with vectors, lines, and planes in two and three dimensions gives students a more intuitive understanding of the subject and enables an easier grasp of more abstract concepts.  Two important pedagogical devices are also directed to this end: First, throughout the book, the notation is carefully selected to indicate the connections between related quantities; second, in addition to numbering, brief mnemonic titles are appended to theorems and examples, making it easier for the student to internalize and recall important concepts (e.g., it is much more satisfying to recall the Dimension Theorem than to recall Theorem 3.5.1). The focus throughout is primarily on fundamentals, guiding readers to appreciate the elegance and interconnectedness of linear algebra.  At the same time, the text presents a number of interesting, targeted applications, offering a glimpse of how the subject is used in other fields, especially in physics.  A section on computer graphics and a chapter on numerical methods also provide looks at the potential uses of linear algebra, and most sections contain exercises using MATLAB® to put theory into practice in a variety of contexts.  Visuals and problems are included to enhance and reinforce understanding throughout the book, and both students’ and instructors’ solutions manuals (for non-MATLAB exercises) are available online. A Concise Introduction to Linear Algebra builds on the author's previous title on the subject (Introduction to Linear Algebra, Jones & Bartlett, 1996).  With brevity, precision, and rigor, the work is an ideal choice for a standard one-semester course targeted primarily at math or physics majors.  It is a valuable addition to the book collection of anyone who teaches or studies the subject.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817683245
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8325-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281252
_d281252