000 03353nam a22003615i 4500
001 281292
003 MX-SnUAN
005 20160429154059.0
007 cr nn 008mamaa
008 150903s2012 xxu| o |||| 0|eng d
020 _a9780817683283
_99780817683283
024 7 _a10.1007/9780817683283
_2doi
035 _avtls000333741
039 9 _a201509030803
_bVLOAD
_c201404130525
_dVLOAD
_c201404092314
_dVLOAD
_y201402041118
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA329-329.9
100 1 _aKubrusly, Carlos S.
_eautor
_9306855
245 1 0 _aSpectral Theory of Operators on Hilbert Spaces /
_cby Carlos S. Kubrusly.
264 1 _aBoston :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2012.
300 _ax, 197 páginas 2 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPreface -- Preliminaries -- Spectrum -- Spectral Theorem -- Functional Calculus -- Fredholm Theory -- References -- Index.
520 _aThis work is intended to provide a concise introduction to the spectral theory of Hilbert space operators. With an emphasis on detailed proofs and recent aspects of theory, it can serve as a modern textbook for a first graduate course in the subject. The coverage of topics is thorough, exploring various intricate points and hidden features often left untreated. The book begins with a primer on Hilbert space theory, summarizing the basics required for the remainder of the book and establishing unified notation and terminology. After this, standard spectral results for (bounded linear) operators on Banach and Hilbert spaces, including the classical partition of the spectrum and spectral properties for specific classes of operators, are discussed. A study of the spectral theorem for normal operators follows, covering both the compact and the general case, and proving both versions of the theorem in full detail. This leads into an investigation of functional calculus for normal operators and Riesz functional calculus, which in turn is followed by Fredholm theory and compact perturbations of the spectrum, where a finer analysis of the spectrum is worked out. Here, further partitions involving the essential spectrum, including the Weyl and Browder spectra, are introduced. The final section of the book deals with Weyl's and Browder's theorems and provides a look at very recent results.  Spectral Theory of Operators on Hilbert Spaces is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will be useful for working mathematicians using spectral theory of Hilbert space operators, as well as for scientists wishing to harness the applications of this theory.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817683276
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8328-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281292
_d281292