000 | 03500nam a22003975i 4500 | ||
---|---|---|---|
001 | 281293 | ||
003 | MX-SnUAN | ||
005 | 20160429154059.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 xxu| o |||| 0|eng d | ||
020 |
_a9780817683344 _99780817683344 |
||
024 | 7 |
_a10.1007/9780817683344 _2doi |
|
035 | _avtls000333742 | ||
039 | 9 |
_a201509030803 _bVLOAD _c201404130525 _dVLOAD _c201404092314 _dVLOAD _y201402041118 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA241-247.5 | |
100 | 1 |
_aBump, Daniel. _eeditor. _9306856 |
|
245 | 1 | 0 |
_aMultiple Dirichlet Series, L-functions and Automorphic Forms / _cedited by Daniel Bump, Solomon Friedberg, Dorian Goldfeld. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston : _bImprint: Birkhäuser, _c2012. |
|
300 |
_aviii, 361 páginas 78 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v300 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Introduction: Multiple Dirichlet Series -- A Crystal Description for Symplectic Multiple Dirichlet Series -- Metaplectic Whittaker Functions and Crystals of Type B -- Metaplectic Ice -- Littelmann patterns and Weyl Group Multiple Dirichlet Series of Type D -- Toroidal Automorphic Forms, Waldspurger Periods and Double Dirichlet Series -- Natural Boundaries and Integral Moments of L-functions.- A Trace Formula of Special Values of Automorphic L-functions -- The Adjoint L-function of SU(2,1) -- Symplectic Ice -- On Witten Multiple Zeta-Functions Associated with Semisimple Lie Algebras III -- A Pseudo Twin-Prime Theorem -- Principal Series Representations of Metaplectic Groups over Local Fields -- Two-Dimensional Adelic Analysis and Cuspidal Automorphic Representations of GL(2). | |
520 | _aMultiple Dirichlet Series, L-functions and Automorphic Forms gives the latest advances in the rapidly developing subject of Multiple Dirichlet Series, an area with origins in the theory of automorphic forms that exhibits surprising and deep connections to crystal graphs and mathematical physics. As such, it represents a new way in which areas including number theory, combinatorics, statistical mechanics, and quantum groups are seen to fit together. The volume also includes papers on automorphic forms and L-functions and related number-theoretic topics. This volume will be a valuable resource for graduate students and researchers in number theory, combinatorics, representation theory, mathematical physics, and special functions. Contributors: J. Beineke, B. Brubaker, D. Bump, G. Chinta, G. Cornelissen, C.A. Diaconu, S. Frechette, S. Friedberg, P. Garrett, D. Goldfeld, P.E. Gunnells, B. Heim, J. Hundley, D. Ivanov, Y. Komori, A.V. Kontorovich, O. Lorscheid, K. Matsumoto, P.J. McNamara, S.J. Patterson, M. Suzuki, H. Tsumura. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aFriedberg, Solomon. _eeditor. _9306857 |
|
700 | 1 |
_aGoldfeld, Dorian. _eeditor. _9306858 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817683337 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8334-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281293 _d281293 |