000 04316nam a22003975i 4500
001 281295
003 MX-SnUAN
005 20160429154059.0
007 cr nn 008mamaa
008 150903s2012 xxu| o |||| 0|eng d
020 _a9780817683405
_99780817683405
024 7 _a10.1007/9780817683405
_2doi
035 _avtls000333744
039 9 _a201509030803
_bVLOAD
_c201404130525
_dVLOAD
_c201404092314
_dVLOAD
_y201402041118
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA299.6-433
100 1 _aArnold, V.I.
_eautor
_9306861
245 1 0 _aSingularities of Differentiable Maps, Volume 1 :
_bClassification of Critical Points, Caustics and Wave Fronts /
_cby V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko.
264 1 _aBoston :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2012.
300 _axii, 282 páginas 67 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aModern Birkhäuser Classics
500 _aSpringer eBooks
505 0 _aPart I. Basic concepts -- The simplest examples -- The classes Sigma^ I -- The quadratic differential of a map -- The local algebra of a map and the Weierstrass preparation theorem -- The local multiplicity of a holomorphic map -- Stability and infinitesimal stability -- The proof of the stability theorem -- Versal deformations -- The classification of stable germs by genotype -- Review of further results -- Part II. Critical points of smooth functions -- A start to the classification of critical points -- Quasihomogeneous and semiquasihomogeneous singularities -- The classification of quasihomogeneous functions -- Spectral sequences for the reduction to normal forms -- Lists of singularities -- The determinator of singularities -- Real, symmetric and boundary singularities -- Part III. Singularities of caustics and wave fronts -- Lagrangian singularities -- Generating families -- Legendrian singularities -- The classification of Lagrangian and Legendrian singularities -- The bifurcation of caustics and wave fronts -- References -- Further references -- Subject Index.
520 _aOriginally published in the 1980s, Singularities of Differentiable Maps: The Classification of Critical Points, Caustics and Wave Fronts was the first of two volumes that together formed a translation of the authors' influential Russian monograph on singularity theory.  This uncorrected softcover reprint of the work brings its still-relevant content back into the literature, making it available—and affordable—to a global audience of researchers and practitioners. Singularity theory is a far-reaching extension of maxima and minima investigations of differentiable functions, with implications for many different areas of mathematics, engineering (catastrophe theory and the theory of bifurcations), and science.  The three parts of this first volume deal with the stability problem for smooth mappings, critical points of smooth functions, and caustics and wave front singularities.  Building on these concepts, the second volume (Monodromy and Asymptotics of Integrals) describes the topological and algebro-geometrical aspects of the theory, including monodromy, intersection forms, oscillatory integrals, asymptotics, and mixed Hodge structures of singularities. Singularities of Differentiable Maps: The Classification of Critical Points, Caustics and Wave Fronts accommodates the needs of non-mathematicians, presupposing a limited mathematical background and beginning at an elementary level.  With this foundation, the book's sophisticated development permits readers to explore an unparalleled breadth of applications.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGusein-Zade, S.M.
_eautor
_9306862
700 1 _aVarchenko, A.N.
_eautor
_9306863
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817683399
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8340-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281295
_d281295