000 04529nam a22003975i 4500
001 281296
003 MX-SnUAN
005 20160429154059.0
007 cr nn 008mamaa
008 150903s2012 xxu| o |||| 0|eng d
020 _a9780817683436
_99780817683436
024 7 _a10.1007/9780817683436
_2doi
035 _avtls000333745
039 9 _a201509030803
_bVLOAD
_c201404130525
_dVLOAD
_c201404092315
_dVLOAD
_y201402041118
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA299.6-433
100 1 _aArnold, V.I.
_eautor
_9306861
245 1 0 _aSingularities of Differentiable Maps, Volume 2 :
_bMonodromy and Asymptotics of Integrals /
_cby V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko.
264 1 _aBoston :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2012.
300 _ax, 492 páginas 83 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aModern Birkhäuser Classics
500 _aSpringer eBooks
505 0 _aPart I. The topological structure of isolated critical points of functions -- Introduction -- Elements of the theory of Picard-Lefschetz -- The topology of the non-singular level set and the variation operator of a singularity -- The bifurcation sets and the monodromy group of a singularity -- The intersection matrices of singularities of functions of two variables -- The intersection forms of boundary singularities and the topology of complete intersections -- Part II. Oscillatory integrals -- Discussion of results -- Elementary integrals and the resolution of singularities of the phase -- Asymptotics and Newton polyhedra -- The singular index, examples -- Part III. Integrals of holomorphic forms over vanishing cycles -- The simplest properties of the integrals -- Complex oscillatory integrals -- Integrals and differential equations -- The coefficients of series expansions of integrals, the weighted and Hodge filtrations and the spectrum of a critical point -- The mixed Hodge structure of an isolated critical point of a holomorphic function -- The period map and the intersection form -- References -- Subject Index.
520 _aOriginally published in the 1980s, Singularities of Differentiable Maps: Monodromy and Asymptotics of Integrals was the second of two volumes that together formed a translation of the authors' influential Russian monograph on singularity theory.  This uncorrected softcover reprint of the work brings its still-relevant content back into the literature, making it available—and affordable—to a global audience of researchers and practitioners. While the first volume of this title, subtitled Classification of Critical Points, Caustics and Wave Fronts, contained the zoology of differentiable maps—that is, was devoted to a description of what, where, and how singularities could be encountered—this second volume concentrates on elements of the anatomy and physiology of singularities of differentiable functions.  The questions considered here are about the structure of singularities and how they function. In the first part the authors consider the topological structure of isolated critical points of holomorphic functions: vanishing cycles; distinguished bases; intersection matrices; monodromy groups; the variation operator; and their interconnections and method of calculation.  The second part is devoted to the study of the asymptotic behavior of integrals of the method of stationary phase, which is widely met within applications.  The third and last part deals with integrals evaluated over level manifolds in a neighborhood of the critical point of a holomorphic function.   This monograph is suitable for mathematicians, researchers, postgraduates, and specialists in the areas of mechanics, physics, technology, and other sciences dealing with the theory of singularities of differentiable maps.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGusein-Zade, S.M.
_eautor
_9306862
700 1 _aVarchenko, A.N.
_eautor
_9306863
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817683429
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8343-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281296
_d281296