000 04073nam a22004215i 4500
001 281355
003 MX-SnUAN
005 20160429154102.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9780817649951
_99780817649951
024 7 _a10.1007/9780817649951
_2doi
035 _avtls000333695
039 9 _a201509030217
_bVLOAD
_c201404130516
_dVLOAD
_c201404092305
_dVLOAD
_y201402041117
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aCalin, Ovidiu.
_eautor
_9306339
245 1 0 _aHeat Kernels for Elliptic and Sub-elliptic Operators :
_bMethods and Techniques /
_cby Ovidiu Calin, Der-Chen Chang, Kenro Furutani, Chisato Iwasaki.
250 _a1.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2011.
300 _axviii, 436 páginas 25 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aApplied and Numerical Harmonic Analysis
500 _aSpringer eBooks
505 0 _aPart I. Traditional Methods for Computing Heat Kernels -- Introduction -- Stochastic Analysis Method -- A Brief Introduction to Calculus of Variations -- The Path Integral Approach -- The Geometric Method -- Commuting Operators -- Fourier Transform Method -- The Eigenfunctions Expansion Method -- Part II. Heat Kernel on Nilpotent Lie Groups and Nilmanifolds -- Laplacians and Sub-Laplacians -- Heat Kernels for Laplacians and Step 2 Sub-Laplacians -- Heat Kernel for Sub-Laplacian on the Sphere S^3 -- Part III. Laguerre Calculus and Fourier Method -- Finding Heat Kernels by Using Laguerre Calculus -- Constructing Heat Kernel for Degenerate Elliptic Operators -- Heat Kernel for the Kohn Laplacian on the Heisenberg Group -- Part IV. Pseudo-Differential Operators -- The Psuedo-Differential Operators Technique -- Bibliography -- Index.
520 _aThis monograph is a unified presentation of several theories of finding explicit formulas for heat kernels for both elliptic and sub-elliptic operators. These kernels are important in the theory of parabolic operators because they describe the distribution of heat on a given manifold as well as evolution phenomena and diffusion processes. The work is divided into four main parts: Part I treats the heat kernel by traditional methods, such as the Fourier transform method, paths integrals, variational calculus, and eigenvalue expansion; Part II deals with the heat kernel on nilpotent Lie groups and nilmanifolds; Part III examines Laguerre calculus applications; Part IV uses the method of pseudo-differential operators to describe heat kernels. Topics and features: •comprehensive treatment from the point of view of distinct branches of mathematics, such as stochastic processes, differential geometry, special functions, quantum mechanics, and PDEs; •novelty of the work is in the diverse methods used to compute heat kernels for elliptic and sub-elliptic operators; •most of the heat kernels computable by means of elementary functions are covered in the work; •self-contained material on stochastic processes and variational methods is included. Heat Kernels for Elliptic and Sub-elliptic Operators is an ideal reference for graduate students, researchers in pure and applied mathematics, and theoretical physicists interested in understanding different ways of approaching evolution operators.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aChang, Der-Chen.
_eautor
_9306340
700 1 _aFurutani, Kenro.
_eautor
_9306969
700 1 _aIwasaki, Chisato.
_eautor
_9306970
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817649944
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4995-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281355
_d281355