000 | 04073nam a22004215i 4500 | ||
---|---|---|---|
001 | 281355 | ||
003 | MX-SnUAN | ||
005 | 20160429154102.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxu| o |||| 0|eng d | ||
020 |
_a9780817649951 _99780817649951 |
||
024 | 7 |
_a10.1007/9780817649951 _2doi |
|
035 | _avtls000333695 | ||
039 | 9 |
_a201509030217 _bVLOAD _c201404130516 _dVLOAD _c201404092305 _dVLOAD _y201402041117 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA370-380 | |
100 | 1 |
_aCalin, Ovidiu. _eautor _9306339 |
|
245 | 1 | 0 |
_aHeat Kernels for Elliptic and Sub-elliptic Operators : _bMethods and Techniques / _cby Ovidiu Calin, Der-Chen Chang, Kenro Furutani, Chisato Iwasaki. |
250 | _a1. | ||
264 | 1 |
_aBoston : _bBirkhäuser Boston, _c2011. |
|
300 |
_axviii, 436 páginas 25 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aApplied and Numerical Harmonic Analysis | |
500 | _aSpringer eBooks | ||
505 | 0 | _aPart I. Traditional Methods for Computing Heat Kernels -- Introduction -- Stochastic Analysis Method -- A Brief Introduction to Calculus of Variations -- The Path Integral Approach -- The Geometric Method -- Commuting Operators -- Fourier Transform Method -- The Eigenfunctions Expansion Method -- Part II. Heat Kernel on Nilpotent Lie Groups and Nilmanifolds -- Laplacians and Sub-Laplacians -- Heat Kernels for Laplacians and Step 2 Sub-Laplacians -- Heat Kernel for Sub-Laplacian on the Sphere S^3 -- Part III. Laguerre Calculus and Fourier Method -- Finding Heat Kernels by Using Laguerre Calculus -- Constructing Heat Kernel for Degenerate Elliptic Operators -- Heat Kernel for the Kohn Laplacian on the Heisenberg Group -- Part IV. Pseudo-Differential Operators -- The Psuedo-Differential Operators Technique -- Bibliography -- Index. | |
520 | _aThis monograph is a unified presentation of several theories of finding explicit formulas for heat kernels for both elliptic and sub-elliptic operators. These kernels are important in the theory of parabolic operators because they describe the distribution of heat on a given manifold as well as evolution phenomena and diffusion processes. The work is divided into four main parts: Part I treats the heat kernel by traditional methods, such as the Fourier transform method, paths integrals, variational calculus, and eigenvalue expansion; Part II deals with the heat kernel on nilpotent Lie groups and nilmanifolds; Part III examines Laguerre calculus applications; Part IV uses the method of pseudo-differential operators to describe heat kernels. Topics and features: •comprehensive treatment from the point of view of distinct branches of mathematics, such as stochastic processes, differential geometry, special functions, quantum mechanics, and PDEs; •novelty of the work is in the diverse methods used to compute heat kernels for elliptic and sub-elliptic operators; •most of the heat kernels computable by means of elementary functions are covered in the work; •self-contained material on stochastic processes and variational methods is included. Heat Kernels for Elliptic and Sub-elliptic Operators is an ideal reference for graduate students, researchers in pure and applied mathematics, and theoretical physicists interested in understanding different ways of approaching evolution operators. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aChang, Der-Chen. _eautor _9306340 |
|
700 | 1 |
_aFurutani, Kenro. _eautor _9306969 |
|
700 | 1 |
_aIwasaki, Chisato. _eautor _9306970 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817649944 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4995-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281355 _d281355 |